分享
分享赚钱 收藏 举报 版权申诉 / 31

类型人教版九年级数学上册第二十三章旋转章节测试试卷(含答案解析).docx

  • 上传人:a****
  • 文档编号:869381
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:31
  • 大小:586.12KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二十三 旋转 章节 测试 试卷 答案 解析
    资源描述:

    1、人教版九年级数学上册第二十三章旋转章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A,B的坐标分别为(1,1)、(3,2),将ABC绕点A按逆时针方向旋转90,得到ABC,则B点的坐标为(

    2、)A(1,3)B(1,2)C(0,2)D(0,3)2、已知点P坐标为,将线段OP绕原点O逆时针旋转90得到线段,则点P的对应点的坐标为()ABCD3、如图,矩形ABCD绕点A逆时针旋转(090)得到矩形ABCD,此时点B恰好在DC边上,若BBC=15,则的大小为()A15B25C30D454、如图,将绕点逆时针旋转得到,若且于点,则的度数为()ABCD5、如图,RtABC中,C=90,A=30,AB=20,点P是AC边上的一个动点,将线段BP绕点B顺时针旋转60得到线段BQ,连接CQ则在点P运动过程中,线段CQ的最小值为()A4B5C10D56、在方格纸中,选择标有序号中的一个小正方形涂黑,与

    3、图中阴影部分构成中心对称图形该小正方形的序号是()ABCD7、若点P(2,)与点Q(,)关于原点对称,则mn的值分别为()ABC1D58、如图,在ABC中,ACB90,ACBC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE当ADBF时,BEF的度数是()A45B60C62.5D67.59、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD10、下列交通标识中,不是轴对称图形,是中心对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,CAB

    4、65,在同一平面内,将ABC绕点A逆时针旋转到的位置,使得,则等于_2、如图,在RtABC中,BAC90,ABAC4,点D在线段BC上,BD3,将线段AD绕点A逆时针旋转90得到线段AE,EFAC,垂足为点F则AF的长为_3、如图,在平面直角坐标系中,由绕点顺时针旋转而得,则所在直线的解析式是_4、如图所示,五角星的顶点是一个正五边形的五个顶点,这个五角星绕中心至少旋转_度能和自身重合5、如图,在ABC中,CAB45,若CAB25,则旋转角的度数为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在等腰三角形ABC中,ABBC将绕顶点B逆时针旋转到的位置,AB与A1C1相交于点D,A

    5、C与A1C1,BC1分别交于点E,F(1)求证:BCFBA1D;(2)当时,判定四边形A1BCE的形状并说明理由2、问题原型:如图,在等腰直角三角形ABC中,ACB=90,BC=a将边AB绕点B顺时针旋转90得到线段BD,连结CD过点D作BCD的BC边上的高DE,易证ABCBDE,从而得到BCD的面积为 初步探究:如图,在RtABC中,ACB=90,BC=a将边AB绕点B顺时针旋转90得到线段BD,连结CD用含a的代数式表示BCD的面积,并说明理由简单应用:如图,在等腰三角形ABC中,AB=AC,BC=a将边AB绕点B顺时针旋转90得到线段BD,连结CD直接写出BCD的面积(用含a的代数式表示

    6、)3、如图,在中,ACB90,ACBC点D是BC延长线上一点,连接AD将线段AD绕点A逆时针旋转90,得到线段AE过点E作,交AB于点F(1)直接写出AFE的度数是_;求证:DACE;(2)用等式表示线段AF与DC的数量关系,并证明4、定义:将图形M绕点P顺时针旋转90得到图形N,则图形N称为图形M关于点P的“垂直图形”例如:在下图中,点D为点C关于点P的“垂直图形” (1)点A关于原点O的“垂直图形”为点B若点A的坐标为(0,2),直接写出点B的坐标;若点B的坐标为(2,1),直接写出点A的坐标;(2)E(-3,3),F(-2,3),G(a,0)线段EF关于点G的“垂直图形”记为EF,点E的

    7、对应点为E,点F的对应点为F求点E的坐标;当点G运动时,求的最小值5、如图,在直角坐标平面内,已知点A的坐标(2,0)(1)图中点B的坐标是_;(2)点B关于原点对称的点C的坐标是_;点A关于y轴对称的点D的坐标是_;(3)四边形ABDC的面积是_;(4)在y轴上找一点F,使,那么点F的所有可能位置是_-参考答案-一、单选题1、D【解析】【分析】根据题意画出图形,然后结合直角坐标系即可得出B的坐标【详解】解:如图,根据图形可得:点B坐标为(0,3),故选:D【考点】本题考查了旋转作图的知识及旋转后坐标的变化,解答本题的关键是根据题意所述的旋转三要素画出图形,然后结合直角坐标系解答2、B【解析】

    8、【分析】如图,作轴于,轴于,证明,有,进而可得点坐标【详解】解:如图,作轴于,轴于,在和中,故选B【考点】本题考查了绕原点旋转90的点坐标,三角形全等的判定与性质解题的关键在于熟练掌握旋转的性质3、C【解析】【分析】由矩形的性质,可知ABC90,再由旋转,可知ABB为等腰三角形,根据内角和求解即可.【详解】解:连接BB四边形ABCD是矩形,ABC=90,CBB=15,ABB=90-15=75,AB=AB,ABB=ABB=75,BAB=180-275=30,=30,故选:C【考点】本题考查旋转的性质,矩形的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题4、C【解析】【分析】由

    9、旋转的性质可得BAD=55,E=ACB=70,由直角三角形的性质可得DAC=20,即可求解【详解】解:将ABC绕点A逆时针旋转55得ADE,BAD=55,E=ACB=70,ADBC,DAC=20,BAC=BAD+DAC=75故选C【考点】本题考查了旋转的性质,掌握旋转的性质是本题的关键5、D【解析】【分析】将RtABC绕点B顺时针旋转60得到,再设线段的中点为M,并连接CM根据线段BP的旋转方式确定点Q在线段上运动,再根据垂线段最短确定当Q与点M重合时,CQ取得最小值为CM根据C=90,A=30,AB=20求出BC的长度,再根据旋转的性质求出和的长度,根据线段的和差关系确定点C是线段的中点,进

    10、而确定CM是的中位线,再根据三角形中位线定理即可求出CM的长度【详解】解:如下图所示,将RtABC绕点B顺时针旋转60得到,再设线段的中点为M,并连接CM点P是AC边上的一个动点,线段BP绕点B顺时针旋转60得到线段BQ,点Q在线段上运动当,即点Q与点M重合时,线段CQ取得最小值为CMC=90,A=30,AB=20,BC=10RtABC绕点B顺时针旋转60得到,=BC=10,点C是线段中点点M是线段的中点,CM是的中位线故选:D【考点】本题考查旋转的性质,直角三角形30所对的直角边是斜边的一半,垂线段最短,三角形中位线定理,综合应用这些知识点是解题关键6、B【解析】【分析】直接利用中心对称图形

    11、的性质得出答案即可【详解】解:如图,把标有序号的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,故选B【考点】本题考查了利用旋转设计图案和中心对称图形的定义,要知道,一个图形绕端点旋转180所形成的图形叫中心对称图形7、B【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答【详解】解:P(2,-n)与点Q(-m,-3)关于原点对称,2=-(-m),-n=-(-3),m=2,n=-3, 故选:B【考点】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律8、D【解析】【分析】根据旋转的性质可得CDCE和DCE90,结合ACB90,ACBC,可证A

    12、CDBCE,依据全等三角形的性质即可得到CBEA45,再由ADBF可得等腰BEF,则可计算出BEF的度数【详解】解:由旋转性质可得: CDCE,DCE90ACB90,ACBC,A45ACBDCBDCEDCB即ACDBCEACDBCECBEA45ADBF,BEBFBEFBFE 67.5故选:D【考点】本题考查了旋转的性质、全等三角形的判定与性质以及等腰三角形的性质,解题的关键是熟练运用旋转的性质找出相等的线段和角,并能准确判定三角形全等,从而利用全等三角形性质解决相应的问题9、C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图

    13、形,故本选项不符合题意;B既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D不是轴对称图形,是中心对称图形,故本选项不符合题意故选:C【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合10、D【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个

    14、图形叫做轴对称图形【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项不符合题意;C既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D不是轴对称图形,是中心对称图形,故本选项符合题意故选:D【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、50【解析】【分析】由平行线的性质可求得的度数,然后由旋转的性质得到,然后依据三角形的性质可知的度数,依据三角形的内角和定理可求得的度数,从而得到的度数.【详解】解:由旋

    15、转的性质可知:故答案为:.2、1【解析】【分析】根据勾股定理先求出BC边长,再求出DC长,过点D作DM垂直AC,可证,即AF=DM,在等腰直角DMC中可求DM,即可直接求解【详解】解:在RtABC中,BAC=90,AB=AC=4,根据勾股定理得,AB2+AC2=BC2,又BD=3,DCBCBD过点D作DMAC于点M,由旋转的性质得DAE=90,ADAE,DAC+EAF=90又DAC+ADM=90,ADM=EAF在RtADM和RtEAF中,(AAS),AF=DM在等腰RtDMC中,由勾股定理得,DM2+MC2=DC2,DM=1,AF=DM=1故答案为:1【考点】本题主要考查等腰直角三角形,旋转的

    16、性质以及全等三角形的判定与性质,证明ADMEAF是解答本题的关键3、【解析】【分析】过点C作CDx轴于点D,易知ACDBAO(AAS),已知A(2,0),B(0,1),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解【详解】解: 过点作轴于点,BOA=ADC=90.BAC=90,BAO+CAD=90.ABO+BAO=90,CAD=ABO.AB=AC,.设直线的解析式为,将点,点坐标代入得直线的解析式为故答案为【考点】本题是几何图形旋转与待定系数法求一次函数解析式的综合题,难度中等4、72【解析】【分析】根据题意,五角星的五个角全等,根据图形间的关系可

    17、得答案【详解】根据题意,五角星的顶点是一个正五边形的五个顶点,这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过4次旋转而得到,每次旋转的度数为360除以5,为72度故答案为:72【考点】此题主要考查了旋转对称图形,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等5、20#20度【解析】【分析】根据题干所给角度即可直接求出的大小,即旋转角的大小【详解】解:,旋转角的度数为,故答案为:20【考点】本题考查旋转的性质根据题意找出即为旋转角是解答本题的关键三、解答题1、 (1)见解析(2)菱形,理由见详解【解析】【分析】(1)根据等腰三

    18、角形的性质得到,由旋转的性质得到,根据全等三角的判定定理得到;(2)由旋转的定义得,因此,根据三角形的内角和定理得,因此,证得四边形A1BCE为平行四边形,由于,证得四边形A1BCE为菱形(1)证明:是等腰三角形,将绕顶点B逆时针旋转到的位置,在与 中, ,(ASA) ;(2)解:四边形是菱形,理由如下:将绕顶点B逆时针旋转到的位置, ,四边形是平行四边形,四边形是菱形【考点】本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,菱形的判定定理等,熟悉掌握旋转的性质,全等三角形的判定定理,菱形的判定方法是本题的解题关键2、见解析【解析】【详解】试题分析:(1)初步探究:如图,过点D作

    19、BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出ABCBDE,就有DE=BC=a,进而由三角形的面积公式得出结论,(2)简单运用:如图,过点A作AFBC与F,过点D作DEBC的延长线于点E,由等腰三角形的性质可以得出BF=BC,由条件可以得出AFBBED就可以得出BF=DE,由三角形的面积公式就可以得出结论.试题解析:(1)BCD的面积为,理由:如图,过点D作BC的垂线,与BC的延长线交于点E,BED=ACB=90,线段AB绕点B顺时针旋转90得到线段BE,AB=BD,ABD=90,ABC+DBE=90,A+ABC=90,A=DBE,在ABC和BDE中,ABCBDE(AAS),BC=

    20、DE=a,SBCD=SBCD=,(2)简单应用:如图,过点A作AFBC与F,过点D作DEBC的延长线于点E,AFB=E=90,BF=,FAB+ABF=90,ABD=90,ABF+DBE=90,FAB=EBD,线段BD是由线段AB旋转得到的,AB=BD,在AFB和BED中,AFBBED(AAS),BF=DE=,SBCD=,SBCD=,BCD的面积为,3、 (1);见解析(2);证明见解析【解析】【分析】(1)根据AC=BC,ACB=90,得出,根据,得出,即可得出的度数;延长EF交EF于点G,并得出,由,得出DACE;(2)先证明,得出,根据得出,从而得出,即可得出(1)解:AC=BC,ACB=

    21、90,;延长EF交EF于点G,如图所示:,将线段AD绕点A逆时针旋转90得到线段AE,;(2);理由如下:将线段AD绕点A逆时针旋转90得到线段AE,在和中,【考点】本题主要考查了等腰直角三角形的性质,三角形全等的判定和性质,平行线的性质,解直角三角形,旋转的性质,作出相应的辅助线,熟练掌握全等三角形的判定方法是解题的关键4、 (1)B(2,0);A(-1,2);(2)E(3+a,3+a);FF的最小值为3【解析】【分析】(1)根据“垂直图形”的定义解决问题即可;(2)构造全等三角形,利用全等三角形的性质求解即可;FGF是等腰直角三角形,当FGx轴时,FG取得最小值,即FF有最小值,据此求解即

    22、可解决问题(1)解:如图中,观察图象可知B(2,0);如图,AOB=ACO=ODB=90,A+AOC=90,AOC+BOD=90,A=BOD,AO=OB,AOCOBD(AAS),OC=BD=1,AC=OD=2,A(-1,2);(2)解:如图,过点E作EPx轴于P,过点E作EHx轴于HEPG=EGE=GHE=90,E+PGE=90,PGE+EGH=90,E=EGH,EG=GE,EPGGHE(AAS),EP=GH=3,PG=EH=a+3,OH=3+a,E(3+a,3+a);FGF=90,FG=GF,FGF是等腰直角三角形,FF=FG,当FGx轴时,FG取得最小值,即FF有最小值,FF的最小值为3【

    23、考点】本题考查几何变换综合题,考查了旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是理解题意,学会添加常用辅助线,构造全等三角形解决问题5、 (1)(3,4)(2)(3,4),(2,0)(3)16(4)(0,4)或(0,4)【解析】【分析】(1)根据坐标的定义,判定即可;(2)根据原点对称,y轴对称的点的坐标特点计算即可;(3)把四边形的面积分割成三角形的面积计算;(4)根据面积相等,确定OF的长,从而确定坐标(1)过点B作x轴的垂线,垂足所对应的数为3,因此点B的横坐标为3,过点B作y轴的垂线,垂足所对应的数为4,因此点B的纵坐标为4,所以点B(3,4);故答案为:(3,4);(2)由于关于原点对称的两个点坐标纵横坐标均为互为相反数,所以点B(3,4)关于原点对称点C(3,4),由于关于y轴对称的两个点,其横坐标互为相反数,其纵坐标不变,所以点A(2,0)关于y轴对称点D(2,0),故答案为:(3,4),(2,0);(3)24416,故答案为:16;(4)8,ADOF8,OF4,又点F在y轴上,点F(0,4)或(0,4),故答案为:(0,4)或(0,4)【考点】本题考查了坐标系中对称点的坐标确定,图形的面积计算,正确理解坐标的意义,适当分割图形是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十三章旋转章节测试试卷(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-869381.html
    相关资源 更多
  • 2012高一物理课件 第四章 机械能和能源 (粤教版必修2).ppt2012高一物理课件 第四章 机械能和能源 (粤教版必修2).ppt
  • 2012高一物理课件 7.10 能量守恒定律与能源 (人教版必修2).ppt2012高一物理课件 7.10 能量守恒定律与能源 (人教版必修2).ppt
  • 奇数和偶数(专项复习)六年级下册数学第一轮总复习人教版.docx奇数和偶数(专项复习)六年级下册数学第一轮总复习人教版.docx
  • 2012高一物理课件 6.4 超重与失重 24(鲁科版必修1).ppt2012高一物理课件 6.4 超重与失重 24(鲁科版必修1).ppt
  • 2012高一物理课件 6.4 超重与失重 23(鲁科版必修1).ppt2012高一物理课件 6.4 超重与失重 23(鲁科版必修1).ppt
  • 2012高一物理课件 6.4 超重与失重 20(鲁科版必修1).ppt2012高一物理课件 6.4 超重与失重 20(鲁科版必修1).ppt
  • 2012高一物理课件 6.4 超重与失重 19(鲁科版必修1).ppt2012高一物理课件 6.4 超重与失重 19(鲁科版必修1).ppt
  • 奇偶性与不等式讲义-2022届高三数学二轮复习 WORD版含答案.docx奇偶性与不等式讲义-2022届高三数学二轮复习 WORD版含答案.docx
  • 2012高一物理课件 6.4 超重与失重 13(鲁科版必修1).ppt2012高一物理课件 6.4 超重与失重 13(鲁科版必修1).ppt
  • 2012高一物理课件 6.3 牛顿第三定律 7(鲁科版必修1).ppt2012高一物理课件 6.3 牛顿第三定律 7(鲁科版必修1).ppt
  • 2012高一物理课件 6.3 牛顿第三定律 6(鲁科版必修1).ppt2012高一物理课件 6.3 牛顿第三定律 6(鲁科版必修1).ppt
  • 2012高一物理课件 6.3 牛顿第三定律 5(鲁科版必修1).ppt2012高一物理课件 6.3 牛顿第三定律 5(鲁科版必修1).ppt
  • 夺油争上产 安全系心中.docx夺油争上产 安全系心中.docx
  • 2012高一物理课件 6.3 牛顿第三定律 4(鲁科版必修1).ppt2012高一物理课件 6.3 牛顿第三定律 4(鲁科版必修1).ppt
  • 2012高一物理课件 6.3 牛顿第三定律 1(鲁科版必修1).ppt2012高一物理课件 6.3 牛顿第三定律 1(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 9(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 9(鲁科版必修1).ppt
  • 夺分锦囊06 2023年中考历史结论汇总 -【临考夺分手册】2023年中考历史考前冲刺锦囊.docx夺分锦囊06 2023年中考历史结论汇总 -【临考夺分手册】2023年中考历史考前冲刺锦囊.docx
  • 2012高一物理课件 6.2 牛顿第二定律 7(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 7(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 6(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 6(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 4(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 4(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 3(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 3(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 25(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 25(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 19(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 19(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 18(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 18(鲁科版必修1).ppt
  • 夸将军.docx夸将军.docx
  • 2012高一物理课件 6.2 牛顿第二定律 17(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 17(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 16(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 16(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 14(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 14(鲁科版必修1).ppt
  • 头部机械性伤害的应急处理.docx头部机械性伤害的应急处理.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1