分享
分享赚钱 收藏 举报 版权申诉 / 30

类型人教版九年级数学上册第二十二章二次函数必考点解析试题(解析卷).docx

  • 上传人:a****
  • 文档编号:869456
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:30
  • 大小:729.13KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二十二 二次 函数 必考 解析 试题
    资源描述:

    1、人教版九年级数学上册第二十二章二次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知二次函数y=x2x+m1的图象与x轴有交点,则m的取值范围是()Am5Bm2Cm5Dm22、如图,抛物线

    2、yx2+7x与x轴交于点A,B,把抛物线在x轴及共上方的部分记作C1将C1向左平移得到C2,C2与x轴交于点B,D,若直线yx+m与C1,C2共3个不同的交点,则m的取值范是()ABCD3、已知二次函数yax24ax+3与x轴交于A、B两点,与y轴交于点C,若SABC3,则a()ABC1D14、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A4米B5米C2米D7米5、关于抛物线:,下列说法正确的是()A它的开

    3、口方向向上B它的顶点坐标是C当时,y随x的增大而增大D对称轴是直线6、抛物线的对称轴为直线若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()ABCD7、将抛物线C1:y(x3)22向左平移3个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()Ayx22Byx22Cyx22Dyx228、二次函数y=ax2+bx+c的图象如图所示,则该二次函数的顶点坐标为()A(1,3)B(0,1)C(0,3)D(2,1)9、函数yax与yax2+a(a0)在同一直角坐标系中的大致图象可能是()ABCD10、已知二次函数(其中是自变量)的图象与轴没有公共点,

    4、且当时,随的增大而减小,则实数的取值范围是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下列关于二次函数(为常数)的结论,该函数的图象与函数的图象形状相同;该函数的图象一定经过点;当时,y随x的增大而减小;该函数的图象的顶点在函数的图像上,其中所有正确的结论序号是_2、如果二次函数的图像在它的对称轴右侧部分是上升的,那么的取值范围是_.3、已知二次函数中,函数y与自变量x的部分对应值如表:x01234y1052125,两点都在该函数的图象上,若,则m的值为_4、已知函数y(2k)x2+kx+1是二次函数,则k满足_5、把抛物线向左平移1个单位长度,再向下平

    5、移3个单位长度,得到的抛物线的解析式为_三、解答题(5小题,每小题10分,共计50分)1、如图,抛物线ya(x2)2+3(a为常数且a0)与y轴交于点A(0,)(1)求该抛物线的解析式;(2)若直线ykx(k0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x2210时,求k的值;(3)当4xm时,y有最大值,求m的值2、已知二次函数()(1)求二次函数图象的对称轴;(2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;(3)在(2)的条件下,对直线下方二次函数图象上的一点,若,求点的坐标3、在平面直角坐标系中,抛物线交x轴于点,过点

    6、B的直线交抛物线于点C(1)求该抛物线的函数表达式;(2) 若点P是直线BC下方抛物线上的一个动点(P不与点B,C重合),求面积的最大值;(3)若点M在抛物线上,将线段OM绕点O旋转90,得到线段ON,是否存在点M,使点N恰好落在直线BC上?若存在,请直接写出点M的坐标;若不存在,请说明理由4、已知抛物线(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点,在抛物线上,若,求m的取值范围5、甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出如果每辆汽车的月租费每增加50

    7、元,那么将少租出1辆汽车另外,公司为每辆租出的汽车支付月维护费200元乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元说明:汽车数量为整数;月利润=月租车费-月维护费;两公司月利润差=月利润较高公司的利润-月利润较低公司的利润在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_元;当每个公司租出的汽车为_辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a元给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两

    8、公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围-参考答案-一、单选题1、A【解析】【详解】【分析】由题意可知=(-1) 2-41( m-1)0,解不等式即可求得m的取值范围.【详解】二次函数y=x2x+m1的图象与x轴有交点,=(-1) 2-41( m-1)0,解得:m5,故选A【考点】本题考查了抛物线与x轴的交点,能根据题意得出关于m的不等式是解此题的关键二次函数y=ax2+bx+c(a0)的图象与x轴的交点个数与=b2-4ac的关系,0抛物线y=ax2+bx+c(a0)的图象与x轴有2个交点;=0抛物线y=ax2+bx+c(a0)的图象与x轴有1个交点

    9、;0与a0两种情况分类讨论抛物线的顶点位置即可得出结论【详解】解:函数yax与yax2+a(a0)A. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;B. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐标原点上,故选项B不正确;C. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确;D. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐

    10、标为(0,a),应交于y轴正半轴正确,故选项D正确;故选D【考点】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键10、D【解析】【分析】由抛物线与轴没有公共点,可得,求得,求出抛物线的对称轴为直线,抛物线开口向上,再结合已知当时,随的增大而减小,可得,据此即可求得答案.【详解】,抛物线与轴没有公共点,解得,抛物线的对称轴为直线 ,抛物线开口向上,而当时,随的增大而减小,实数的取值范围是,故选D【考点】本题考查了二次函数图象与x轴交点问题,抛物线的对称轴,二次函数图象的增减性,熟练掌握和灵活运用相关知识是解题的关键.二、填空题1、【解析】【分析】两个二次函

    11、数可以通过平移得到,由此即可得两个函数的图象形状相同;求出当时,y的值即可得;根据二次函数的增减性即可得;先求出二次函数的顶点坐标,再代入函数进行验证即可得【详解】当时,将二次函数的图象先向右平移m个单位长度,再向上平移个单位长度即可得到二次函数的图象;当时,将二次函数的图象先向左平移个单位长度,再向上平移个单位长度即可得到二次函数的图象该函数的图象与函数的图象形状相同,结论正确对于当时,即该函数的图象一定经过点,结论正确由二次函数的性质可知,当时,y随x的增大而增大;当时,y随x的增大而减小则结论错误的顶点坐标为对于二次函数当时,即该函数的图象的顶点在函数的图象上,结论正确综上,所有正确的结

    12、论序号是故答案为:【考点】本题考查了二次函数的图象与性质等知识点,熟练掌握二次函数的图象与性质是解题关键2、【解析】【分析】由题意得:二次函数的图像开口向上,进而,可得到答案.【详解】二次函数的图像在它的对称轴右侧部分是上升的,二次函数的图像开口向上,.故答案是:【考点】本题主要考查二次函数图象和二次函数的系数之间的关系,掌握二次函数的系数的几何意义,是解题的关键.3、1【解析】【分析】根据表中的对应值得到x=1和x=3时函数值相等,则得到抛物线的对称轴为直线x=2,由于y1=y2,所以,是抛物线上的对称点,则,然后解方程即可【详解】解:x=1时,y=2;x=3时,y=2,抛物线的对称轴为直线

    13、x=2,两点都在该函数的图象上,y1=y2,点,是抛物线上的对称点,解得:故答案为:1【考点】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式4、k2【解析】【分析】利用二次函数定义可得2k0,再解不等式即可【详解】解:由题意得:2k0,解得:k2,故答案为:k2【考点】本题主要考查了二次函数的定义,准确分析计算是解题的关键5、【解析】【分析】直接根据“上加下减,左加右减”进行计算即可【详解】解:抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:,即:故答案为:【考点】本题主要考查函数图像的平移,熟记函数图像的平移方式“上加下减,左加右减”是解

    14、题的关键三、解答题1、(1);(2);(3)【解析】【分析】(1)把代入抛物线的解析式,解方程求解即可; (2)联立两个函数的解析式,消去 得:再利用根与系数的关系与可得关于的方程,解方程可得答案;(3)先求解抛物线的对称轴方程,分三种情况讨论,当 结合函数图象,利用函数的最大值列方程,再解方程即可得到答案.【详解】解:(1)把代入中, 抛物线的解析式为: (2)联立一次函数与抛物线的解析式得: 整理得: x1+x2=4-3k,x1x2=-3,x12+x22=(4-3k)2+6=10,解得: (3)函数的对称轴为直线x=2,当m2时,当x=m时,y有最大值,=-(m-2)2+3,解得m=,m=

    15、-,当m2时,当x=2时,y有最大值,=3,m=,综上所述,m的值为-或【考点】本题考查的是利用待定系数法求解抛物线的解析式,抛物线与轴的交点坐标,一元二次方程根与系数的关系,二次函数的增减性,掌握数形结合的方法与分类讨论是解题的关键.2、(1)直线x=1;(2);(3)或【解析】【分析】(1)利用对称轴公式计算即可;(2)构建方程求出a的值即可解决问题;(3)先求出直线MN的解析式,然后设点的坐标为,过点作轴的垂线交直线于点,得到PQ的长度,根据三角形的面积公式,即可求出答案【详解】解:(1)二次函数(),该二次函数图象的对称轴是直线:;(2)该二次函数的图象开口向上,对称轴为直线,当时,取

    16、得最大值,即,得:,该二次函数的表达式为:,即点的坐标为(3)设直线的解析式为,则,解得:,设直线的解析式为:,设点的坐标为,过点作轴的垂线交直线于点,如图则点的坐标是,解得:,点的坐标是或【考点】本题考查二次函数的性质,一次函数的性质,函数的最值问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型3、(1);(2);(3)存在,或 或或【解析】【分析】(1)将A、B两点的坐标分别代入抛物线的解析式中,得关于a、b的二元一次方程组,解方程组即可求得a、b,从而可求得抛物线的函数解析式;(2)过点P作轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,则有,设,则可得E点坐标

    17、,从而可分别求得PE、DE,从而求得PE,解由二次函数与一次函数组成的方程组,可求得点C的坐标,进而求得PBC的面积关于m的函数,求出函数的最值即可;(3)设点M的坐标为(p,q),分别求出直线OM、ON的解析式,再求得ON与直线的交点N的坐标,根据OM=ON,即可求出p与q的值,从而求得点M的坐标【详解】(1)将点,代入中,得:解得该抛物线表达式为 (2)过点P作轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,如图 设点,则点点P、E均位于直线的下方P、E两点的纵坐标均为负,点C的坐标为方程组的一个解解这个方程组,得,点B坐标为点C的横坐标为(其中)这个二次函数有最大值,且当时,的

    18、最大值为(3)存在设M(p,q),其中,且p0, 则直线OM的解析式为:由于ONOM,则直线ON的解析式为: 解方程组 ,得, 即点N的坐标为 ,且OM=ON 即 或把代入两式中并整理,得: 或 解方程得: , (舍去)当时,;当时,;当时,故点M的坐标分别为:或或当p=0时,则q=3,即M(0,3),而,且OMOB即此时点M也满足题意 综上所述,满足题意的点M的坐标为或或或【考点】本题是二次函数的压轴题,也是中考常考题型,它考查了待定系数法求二次数解析式,二次函数的图象,求二次函数的最值,平面直角坐标系中图象旋转问题,解方程组,勾股定理等知识,运算量较大,这对学生的运算能力提出了更高的要求;

    19、求三角形面积时用到图形的割补方法,这是在平面直角坐标系中求图象面积常用的方法4、(1);(2)或;(3)当a0时,;当a0时,或【解析】【分析】(1)将二次函数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q关于对称轴的对称点,再结合二次函数的图象与性质,即可得到的取值范围【详解】(1),其对称轴为:(2)由(1)知抛物线的顶点坐标为:,抛物线顶点在轴上,解得:或,当时,其解析式为:,当时,其解析式为:,综上,二次函数解析式为:或(3)由(1)知,抛物线的对称轴为,关于的对

    20、称点为,当a0时,若,则-1m3;当a0时,若,则m-1或m3.【考点】本题考查了二次函数对称轴,解析式的计算,以及根据二次函数的图象性质求不等式的取值范围,熟知相关计算是解题的关键5、(1)48000,37;(2)33150元;(3)【解析】【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x辆,根据月利润相等得到方程,解之即可得到结果;(2)设两公司的月利润分别为y甲,y乙,月利润差为y,同(1)可得y甲和y乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y关于x的表达式,根据二次函数的性质

    21、,结合x的范围求出最值,再比较即可;(3)根据题意得到利润差为,得到对称轴,再根据两公司租出的汽车均为17辆,结合x为整数可得关于a的不等式,即可求出a的范围【详解】解:(1)=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x辆,由题意可得:,解得:x=37或x=-1(舍),当每个公司租出的汽车为37辆时,两公司的月利润相等;(2)设两公司的月利润分别为y甲,y乙,月利润差为y,则y甲=,y乙=,当甲公司的利润大于乙公司时,0x37,y=y甲-y乙=,当x=18时,利润差最大,且为18050元;当乙公司的利润大于甲公司时,37x50,y=y乙-y甲=,对称轴为直线x=18,当x=50时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元;(3)捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为=,对称轴为直线x=,x只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,解得:【考点】本题考查了二次函数的实际应用,二次函数的图像和性质,解题时要读懂题意,列出二次函数关系式,尤其(3)中要根据x为整数得到a的不等式

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十二章二次函数必考点解析试题(解析卷).docx
    链接地址:https://www.ketangku.com/wenku/file-869456.html
    相关资源 更多
  • 备战2021年高考历史一轮复习 易错题12 古代中国的思想(含解析).docx备战2021年高考历史一轮复习 易错题12 古代中国的思想(含解析).docx
  • 备战2021年高考历史一轮复习 易错题08 资本主义世界市场的形成和发展(含解析).docx备战2021年高考历史一轮复习 易错题08 资本主义世界市场的形成和发展(含解析).docx
  • 备战2021年高考历史一轮复习 易错题06 二战后世界政治的演变(含解析).docx备战2021年高考历史一轮复习 易错题06 二战后世界政治的演变(含解析).docx
  • 备战2021年高考历史一轮复习 易错题02 古代希腊罗马的政治制度(含解析).docx备战2021年高考历史一轮复习 易错题02 古代希腊罗马的政治制度(含解析).docx
  • 备战2021年高考历史一轮复习 易错题01 古代中国的政治制度(含解析).docx备战2021年高考历史一轮复习 易错题01 古代中国的政治制度(含解析).docx
  • 备战2021年高考化学一轮复习 易错题13 化学反应速率和化学平衡计算(含解析).docx备战2021年高考化学一轮复习 易错题13 化学反应速率和化学平衡计算(含解析).docx
  • 备战2021年高考化学一轮复习 易错题12 化学平衡图像(含解析).docx备战2021年高考化学一轮复习 易错题12 化学平衡图像(含解析).docx
  • 备战2021年高考化学一轮复习 易错题11 影响化学反应速率的因素(含解析).docx备战2021年高考化学一轮复习 易错题11 影响化学反应速率的因素(含解析).docx
  • 备战2021年高考化学一轮复习 易错题10 电极反应式书写(含解析).docx备战2021年高考化学一轮复习 易错题10 电极反应式书写(含解析).docx
  • 备战2021年高考化学一轮复习 易错题09 电化学基础(含解析).docx备战2021年高考化学一轮复习 易错题09 电化学基础(含解析).docx
  • 备战2021年高考化学一轮复习 易错题08 盖斯定律与热化学方程式(含解析).docx备战2021年高考化学一轮复习 易错题08 盖斯定律与热化学方程式(含解析).docx
  • 备战2021年高考化学一轮复习 易错题07 元素周期律(含解析).docx备战2021年高考化学一轮复习 易错题07 元素周期律(含解析).docx
  • 备战2021年高考化学一轮复习 易错题05 氧化还原反应概念及规律(含解析).docx备战2021年高考化学一轮复习 易错题05 氧化还原反应概念及规律(含解析).docx
  • 备战2021年高考化学一轮复习 易错题03 物质的量与化学反应计算(含解析).docx备战2021年高考化学一轮复习 易错题03 物质的量与化学反应计算(含解析).docx
  • 备战2021年高考化学一轮复习 易错题02 阿伏加德罗常数判断(含解析).docx备战2021年高考化学一轮复习 易错题02 阿伏加德罗常数判断(含解析).docx
  • 备战2021年高考化学一轮复习 易错题01 化学用语的书写与表达(含解析).docx备战2021年高考化学一轮复习 易错题01 化学用语的书写与表达(含解析).docx
  • 备战2021年九年级中考数学考点提升训练——专题七十三:勾股定理.docx备战2021年九年级中考数学考点提升训练——专题七十三:勾股定理.docx
  • 备战2021年中考物理电学高频考点专项训练考点06多档位家用电器计算含解析2021040836.docx备战2021年中考物理电学高频考点专项训练考点06多档位家用电器计算含解析2021040836.docx
  • 备战2021年中考物理电学高频考点专项训练考点05与图像结合综合计算含解析2021040835.docx备战2021年中考物理电学高频考点专项训练考点05与图像结合综合计算含解析2021040835.docx
  • 备战2021年中考物理电学高频考点专项训练考点02动态电路分析含解析2021040832.docx备战2021年中考物理电学高频考点专项训练考点02动态电路分析含解析2021040832.docx
  • 备战2021年中考物理实验精练精解专题实验题9探究水的沸腾含解析20210312473.docx备战2021年中考物理实验精练精解专题实验题9探究水的沸腾含解析20210312473.docx
  • 备战2021年中考物理实验精练精解专题实验题7探究某物质的熔化特点含解析20210312471.docx备战2021年中考物理实验精练精解专题实验题7探究某物质的熔化特点含解析20210312471.docx
  • 备战2021年中考物理实验精练精解专题实验题4测量小灯泡的电功率含解析20210312468.docx备战2021年中考物理实验精练精解专题实验题4测量小灯泡的电功率含解析20210312468.docx
  • 备战2021年中考物理实验精练精解专题实验题2探究电流与电压的关系含解析20210312465.docx备战2021年中考物理实验精练精解专题实验题2探究电流与电压的关系含解析20210312465.docx
  • 备战2021年中考物理实验精练精解专题实验题1测量未知电阻Rx含解析20210312454.docx备战2021年中考物理实验精练精解专题实验题1测量未知电阻Rx含解析20210312454.docx
  • 备战2021年中考物理实验精练精解专题实验题19探究重力与质量的关系含解析20210312464.docx备战2021年中考物理实验精练精解专题实验题19探究重力与质量的关系含解析20210312464.docx
  • 备战2021年中考物理实验精练精解专题实验题17探究导体电阻大小与哪些因素有关含解析20210312462.docx备战2021年中考物理实验精练精解专题实验题17探究导体电阻大小与哪些因素有关含解析20210312462.docx
  • 备战2021年中考物理实验精练精解专题实验题16探究压力作用效果与哪些因素有关含解析20210312461.docx备战2021年中考物理实验精练精解专题实验题16探究压力作用效果与哪些因素有关含解析20210312461.docx
  • 备战2021年中考物理实验精练精解专题实验题15测量某物质的密度含解析20210312460.docx备战2021年中考物理实验精练精解专题实验题15测量某物质的密度含解析20210312460.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1