分享
分享赚钱 收藏 举报 版权申诉 / 30

类型人教版九年级数学上册第二十四章圆专项测评试卷(含答案详解).docx

  • 上传人:a****
  • 文档编号:869550
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:30
  • 大小:530.69KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二 十四 专项 测评 试卷 答案 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知O的半径为4,点O到直线m的距离为d,若直线m与O公共点的个数为2个,则d可取()A5B4.5C4D02、如图,

    2、O的半径为5,AB为弦,点C为的中点,若ABC=30,则弦AB的长为()AB5CD53、如图,在中,以点为圆心,为半径的圆与所在直线的位置关系是()A相交B相离C相切D无法判断4、已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()ABCD5、已知中,点P为边AB的中点,以点C为圆心,长度r为半径画圆,使得点A,P在C内,点B在C外,则半径r的取值范围是()ABCD6、如图所示,一个半径为r(r1)的图形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分面积是()ABCD7、如图,螺母的外围可以看作是正六边形ABCDEF,已知这个正六边形的半径是2,则

    3、它的周长是()A6B12C12D248、如图,AB是O的直径,点E是AB上一点,过点E作CDAB,交O于点C,D,以下结论正确的是()A若O的半径是2,点E是OB的中点,则CDB若CD,则O的半径是1C若CAB30,则四边形OCBD是菱形D若四边形OCBD是平行四边形,则CAB609、如图,在ABC中,ACB90,ACBC,AB4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为()A2BC2D10、如图,AB是O的直径,BC与O相切于点B,AC交O于点D

    4、,若ACB=50,则BOD等于()A40B50C60D80第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_2、如图,PA、PB切O于A、B两点,点C在O上,且PC,则AOB_3、如图,在O中,的度数等于250,半径OC垂直于弦AB,垂足为D,那么AC的度数等于_度4、如图,在中,的半径为点是边上的动点,过点作的一条切线(其中点为切点),则线段长度的最小值为_5、如图,A、B、C、D为一个正多边形的相邻四个顶点,O为

    5、正多边形的中心,若ADB=12,则这个正多边形的边数为_三、解答题(5小题,每小题10分,共计50分)1、已知:如图,在O中,AB为弦,C、D两点在AB上,且ACBD求证:2、如图,PA、PB分别切O于A、B,连接PO与O相交于C,连接AC、BC,求证:AC=BC 3、问题提出(1)如图,在ABC中,ABAC10,BC12,点O是ABC的外接圆的圆心,则OB的长为 问题探究(2)如图,已知矩形ABCD,AB4,AD6,点E为AD的中点,以BC为直径作半圆O,点P为半圆O上一动点,求E、P之间的最大距离;问题解决(3)某地有一块如图所示的果园,果园是由四边形ABCD和弦CB与其所对的劣弧场地组成

    6、的,果园主人现要从入口D到上的一点P修建一条笔直的小路DP已知ADBC,ADB45,BD120米,BC160米,过弦BC的中点E作EFBC交于点F,又测得EF40米修建小路平均每米需要40元(小路宽度不计),不考虑其他因素,请你根据以上信息,帮助果园主人计算修建这条小路最多要花费多少元?4、(1)课本再现:在中,是所对的圆心角,是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与的位置关系进行分类图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明;(2)知识应用:如图4,若的半径为2,分别与相切于点A,B,求的长5、正方形ABCD的四

    7、个顶点都在O上,E是O上的一点(1)如图,若点E在上,F是DE上的一点,DF=BE求证:ADFABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=AE请说明理由;(3)如图,若点E在上连接DE,CE,已知BC=5,BE=1,求DE及CE的长-参考答案-一、单选题1、D【解析】【分析】根据直线和圆的位置关系判断方法,可得结论【详解】直线m与O公共点的个数为2个直线与圆相交d半径4故选D【考点】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设O的半径为r,圆心O到直线l的距离为d直线l和O相交dr直线l和O相切dr,直线l和O相离dr2、D【

    8、解析】【分析】连接OC、OA,利用圆周角定理得出AOC=60,再利用垂径定理得出AB即可【详解】连接OC、OA,ABC=30,AOC=60,AB为弦,点C为的中点,OCAB,在RtOAE中,AE=,AB=,故选D【考点】此题考查圆周角定理,关键是利用圆周角定理得出AOC=603、A【解析】【分析】过点C作CDAB于点D,由题意易得AB=5,然后可得,进而根据直线与圆的位置关系可求解【详解】解:过点C作CDAB于点D,如图所示:,根据等积法可得,以点为圆心,为半径的圆,该圆的半径为,圆与AB所在的直线的位置关系为相交,故选A【考点】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题

    9、的关键4、B【解析】【分析】根据题意可以求得半径,进而解答即可【详解】因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距sin601,故选B【考点】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距5、D【解析】【分析】根据勾股定理,得AB=5,由P为AB的中点,得CP=,要使点A,P在C内,r3,r4,从而确定r的取值范围.【详解】点A在C内,r3,点B在C外,r4,故选:D.【考点】本题考查了点和圆的位置关系,利用数形结合思想是解题的关键.6、C【解析】【分析】当运动到正六边形的角上时,圆与两边的切点分别为,连接,根据正六边形的性质可知,故,再由

    10、锐角三角函数的定义用表示出的长,可知圆形纸片不能接触到的部分的面积,由此可得出结论【详解】解:如图所示,连接,此多边形是正六边形,圆形纸片不能接触到的部分的面积故选:C【考点】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键7、C【解析】【分析】如图,先求解正六边形的中心角,再证明是等边三角形,从而可得答案【详解】解:如图,为正六边形的中心,为正六边形的半径,为等边三角形,正六边形ABCDEF的周长为故选:【考点】本题考查的是正多边形与圆,正多边形的半径,中心角,周长,掌握以上知识是解题的关键8、C【解析】【分析】根据垂径定理,解直角三角形知识,一一求解判断即可【详解】解:A、OC

    11、OB2,点E是OB的中点,OE1,CDAB,CEO90,CD2CE, ,本选项错误不符合题意;B、根据,缺少条件,无法得出半径是1,本选项错误,不符合题意;C、A30,COB60,OCOB,COB是等边三角形,BCOC,CDAB,CEDE,BCBD,OCODBCBD,四边形OCBD是菱形;故本选项正确本选项符合题意D、四边形OCBD是平行四边形,OC=OD,所以四边形OCBD是菱形OCBC,OCOB,OCOBBC,BOC60,故本选项错误不符合题意故选:C【考点】本题考查了圆周角定理,垂径定理,菱形的判定和性质,等边三角形的判定和性质,正确的理解题意是解题的关键9、D【解析】【分析】【详解】解

    12、:如图,CACB,ACB90,ADDB,CDAB,ADECDF90,CDADDB,在ADE和CDF中,ADECDF(SAS),DAEDCF,AEDCEG,ADECGE90,A、C、G、D四点共圆,点G的运动轨迹为弧CD,AB4,ABAC,AC2,OAOC,DADC,OAOC,DOAC,DOC90,点G的运动轨迹的长为故选:D10、D【解析】【分析】根据切线的性质得到ABC=90,根据直角三角形的性质求出A,根据圆周角定理计算即可【详解】BC是O的切线,ABC=90,A=90-ACB=40,由圆周角定理得,BOD=2A=80,故选D【考点】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经

    13、过切点的半径是解题的关键二、填空题1、(2,6)【解析】【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用过点M作MFCD于F,过C作CEOA于E,在RtCMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C的坐标【详解】四边形OCDB是平行四边形,点B的坐标为(16,0),CDOA,CD=OB=16,过点M作MFCD于F,则 过C作CEOA于E,A(20,0),OA=20,OM=10,OE=OMME=OMCF=108=2,连接MC, 在RtCMF中, 点C的坐标为(2,6).故答案为(2,6).【考点】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注

    14、意数形结合思想在解题的关键2、120【解析】【分析】根据圆周角定理得到CAOB,根据切线的性质得到PAOPBO90,进而得出P+AOB180,根据题意计算,得到答案【详解】解:由圆周角定理得:CAOB,PA、PB切O于A、B两点,PAOPBO90,P+AOB180,PC,AOB+AOB180,AOB120,故答案为:120【考点】本题考查切线的性质以及圆周角定理,熟记由切线得垂直是解题的关键3、55【解析】【分析】连接OA,OB,由已知可得AOB=360250=110,再根据垂径定理即可得解.【详解】连接OA,OB,由已知可得AOB=360250=110,OCAB,AOC=AOB=55.故答案

    15、为55.【考点】本题主要考查圆心角定理与垂径定理,解此题的关键在于熟练掌握其知识点.4、【解析】【分析】如图:连接OP、OQ,根据,可得当OPAB时,PQ最短;在中运用含30的直角三角形的性质和勾股定理求得AB、AQ的长,然后再运用等面积法求得OP的长,最后运用勾股定理解答即可【详解】解:如图:连接OP、OQ,是的一条切线PQOQ当OPAB时,如图OP,PQ最短在RtABC中,AB=2OB=,AO=cosAAB= SAOB= ,即OP=3在RtOPQ中,OP=3,OQ=1PQ=故答案为【考点】本题考查了切线的性质、含30直角三角形的性质、勾股定理等知识点,此正确作出辅助线、根据勾股定理确定当P

    16、OAB时、线段PQ最短是解答本题的关键5、15【解析】【分析】连接AO,BO,根据圆周角定理得到AOB=24,根据中心角的定义即可求解【详解】如图,连接AO,BO,AOB=2ADB=24这个正多边形的边数为=15故答案为:15【考点】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理三、解答题1、证明见解析【解析】【分析】根据等边对等角可以证得A=B,然后根据SAS即可证得两个三角形全等【详解】证明:OAOB,AB,在OAC和OBD中:,OACOBD(SAS)【考点】本题考查了三角形全等的判定与性质,同圆半径相等正确理解三角形的判定定理是关键2、证明见解析【解析】【详解】分析:连接OA、O

    17、B,根据切线的性质得出OAP和OBP全等,从而得出APC=BPC,从而得出APC和BPC全等,从而得出答案详解:连结OA,OB. PA,PB分别切O于点A,B,PAPB,又OAOB,POPO, OAPOBP(SSS),APCBPC,又PCPC,APCBPC(SAS)ACBC. 点睛:本题主要考查的是切线的性质以及三角形全等的证明与性质,属于基础题型根据切线的性质得出PA=PB是解题的关键3、(1);(2)E、P之间的最大距离为7;(3)修建这条小路最多要花费元【解析】【分析】(1)若AO交BC于K,则AK8,在RtBOK中,设OBx,可得x262+(8x)2,解方程可得OB的长;(2)延长EO

    18、交半圆于点P,可求出此时E、P之间的最大距离为OE+OP的长即可;(3)先求出所在圆的半径,过点D作DGBC,垂足为G,连接DO并延长交于点P,则DP为入口D到上一点P的最大距离,求出DP长即可求出修建这条小路花费的最多费用【详解】(1)如图,若AO交BC于K,点O是ABC的外接圆的圆心,ABAC,AKBC,BK,AK,在RtBOK中,OB2BK2+OK2,设OBx,x262+(8x)2,解得x,OB;故答案为:(2)如图,连接EO,延长EO交半圆于点P,可求出此时E、P之间的距离最大,在是任意取一点异于点P的P,连接OP,PE,EPEO+OPEO+OPEP,即EPEP,AB4,AD6,EO4

    19、,OPOC,EPOE+OP7,E、P之间的最大距离为7(3)作射线FE交BD于点M,BECE,EFBC,是劣弧,所在圆的圆心在射线FE上,假设圆心为O,半径为r,连接OC,则OCr,OEr40,BECE,在RtOEC中,r2802+(r40)2,解得:r100,OEOFEF60,过点D作DGBC,垂足为G,ADBC,ADB45,DBC45,在RtBDG中,DGBG,在RtBEM中,MEBE80,MEOE,点O在BDC内部,连接DO并延长交于点P,则DP为入口D到上一点P的最大距离,在上任取一点异于点P的点P,连接OP,PD,DPOD+OPOD+OPDP,即DPDP,过点O作OHDG,垂足为H,

    20、则OHEG40,DHDGHGDGOE60,,DPOD+r,修建这条小路最多要花费40元【考点】本题主要考查了圆的性质与矩形性质的综合运用,熟练掌握相关方法是解题关键.4、(1)见解析;(2)【解析】【分析】(1)如图2,当点O在ACB的内部,作直径,根据三角形外角的性质和等腰三角形的性质可得结论;如图3,当O在ACB的外部时,作直径CD,同理可理结论;(2)如图4,先根据(1)中的结论可得AOB=120,由切线的性质可得OAP=OBP=90,可得OPA=30,从而得PA的长【详解】解:(1)如图2,连接CO,并延长CO交O于点D,OA=OC=OB,A=ACO,B=BCO,AOD=A+ACO=2

    21、ACO,BOD=B+BCO=2BCO,AOB=AOD+BOD=2ACO+2BCO=2ACB,ACB=AOB;如图3,连接CO,并延长CO交O于点D,OA=OC=OB,A=ACO,B=BCO,AOD=A+ACO=2ACO,BOD=B+BCO=2BCO,AOB=AOD-BOD=2ACO-2BCO=2ACB,ACB=AOB;(2)如图4,连接OA,OB,OP,C=60,AOB=2C=120,PA,PB分别与O相切于点A,B,OAP=OBP=90,APO=BPO=APB=(180-120)=30,OA=2,OP=2OA=4,PA= 【考点】本题考查了切线长定理,圆周角定理等知识,掌握证明圆周角定理的方

    22、法是解本题的关键5、(1)证明见解析;(2)理由见解析;(3)DE=7,CE=【解析】【分析】(1)根据正方形的性质,得AB=AD;根据圆周角的性质,得,结合DF=BE,即可完成证明;(2)由(1)结论得AF=AE,;结合BAD=90,得EAF=90,从而得到EAF是等腰直角三角形,即EF=AE;最后结合DE-DF=EF,从而得到答案;(3)连接BD,将CBE绕点C顺时针旋转90至CDH;结合题意,得CBE+CDE=180,从而得到E,D,H三点共线;根据BC=CD,得,从而推导得BEC=DEC=45,即CEH是等腰直角三角形;再根据勾股定理的性质计算,即可得到答案【详解】(1)如图,在正方形

    23、ABCD中,AB=AD在ADF和ABE中ADFABE(SAS);(2)由(1)结论得:ADFABEAF=AE,3=4正方形ABCD中,BAD=90BAF+3=90BAF+4=90EAF=90EAF是等腰直角三角形EF2=AE2+AF2EF2=2AE2EF=AE即DE-DF=AEDE-BE=AE;(3)连接BD,将CBE绕点C顺时针旋转90至CDH四边形BCDE内接于圆CBE+CDE=180E,D,H三点共线在正方形ABCD中,BAD=90BED=BAD=90BC=CDBEC=DEC=45CEH是等腰直角三角形在RtBCD中,由勾股定理得BD=BC=5在RtBDE中,由勾股定理得:DE=在RtCEH中,由勾股定理得:EH2=CE2+CH2(ED+DH)2=2CE2,即(ED+BE)2=2CE264=2CE2CE=4【考点】本题考查了正方形、圆、等腰三角形、勾股定理、全等三角形、旋转的知识;解题的关键是熟练掌握正方形、圆周角、正多边形与圆、等腰三角形、勾股定理、全等三角形、旋转的性质,从而完成求解

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十四章圆专项测评试卷(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-869550.html
    相关资源 更多
  • 八年级物理上册沪科版习题:期末检测卷.docx八年级物理上册沪科版习题:期末检测卷.docx
  • 八年级物理上册江西人教版习题:第四章检测卷.docx八年级物理上册江西人教版习题:第四章检测卷.docx
  • 八年级物理上册江西人教版习题:第六章检测卷.docx八年级物理上册江西人教版习题:第六章检测卷.docx
  • 八年级物理上册江西人教版习题:期末检测卷(一).docx八年级物理上册江西人教版习题:期末检测卷(一).docx
  • 八年级物理上册江西人教版习题:期中检测卷.docx八年级物理上册江西人教版习题:期中检测卷.docx
  • 八年级物理上册机械运动与声现象综合测试题无答案新版新人教版.docx八年级物理上册机械运动与声现象综合测试题无答案新版新人教版.docx
  • 八年级物理上册期末测评新版北师大版.docx八年级物理上册期末测评新版北师大版.docx
  • 八年级物理上册人教版(通用)习题:第六章检测卷.docx八年级物理上册人教版(通用)习题:第六章检测卷.docx
  • 八年级物理上册人教版(通用)习题:第五章检测卷.docx八年级物理上册人教版(通用)习题:第五章检测卷.docx
  • 八年级物理上册人教版(通用)习题:第一章检测卷.docx八年级物理上册人教版(通用)习题:第一章检测卷.docx
  • 八年级物理上册人教版(通用)习题:期末检测卷(三).docx八年级物理上册人教版(通用)习题:期末检测卷(三).docx
  • 八年级物理上册人教版(贵州专版)习题:第四章检测卷.docx八年级物理上册人教版(贵州专版)习题:第四章检测卷.docx
  • 八年级物理上册人教版(贵州专版)习题:第五章检测卷.docx八年级物理上册人教版(贵州专版)习题:第五章检测卷.docx
  • 八年级物理上册人教版(贵州专版)习题:第三章检测卷.docx八年级物理上册人教版(贵州专版)习题:第三章检测卷.docx
  • 八年级物理上册人教版(贵州专版)习题:第一章检测卷.docx八年级物理上册人教版(贵州专版)习题:第一章检测卷.docx
  • 八年级物理上册人教版(贵州专版)习题:期末检测卷(一).docx八年级物理上册人教版(贵州专版)习题:期末检测卷(一).docx
  • 八年级物理上册人教版(湖北专版)习题:第六章检测卷.docx八年级物理上册人教版(湖北专版)习题:第六章检测卷.docx
  • 八年级物理上册人教版(湖北专版)习题:第五章检测卷.docx八年级物理上册人教版(湖北专版)习题:第五章检测卷.docx
  • 八年级物理上册人教版(湖北专版)习题:期末检测卷(二).docx八年级物理上册人教版(湖北专版)习题:期末检测卷(二).docx
  • 八年级物理上册人教版(湖北专版)习题:期中检测卷.docx八年级物理上册人教版(湖北专版)习题:期中检测卷.docx
  • 八年级物理上册人教版习题:第五章检测卷.docx八年级物理上册人教版习题:第五章检测卷.docx
  • 八年级物理上册人教版习题:第二章检测卷.docx八年级物理上册人教版习题:第二章检测卷.docx
  • 八年级物理上册人教版习题:期末检测卷(二).docx八年级物理上册人教版习题:期末检测卷(二).docx
  • 八年级物理上册【声现象】易错点总结.docx八年级物理上册【声现象】易错点总结.docx
  • 八年级物理上册《第四单元 透镜及其应用》复习要点及自我检测题(无答案) 苏科版.docx八年级物理上册《第四单元 透镜及其应用》复习要点及自我检测题(无答案) 苏科版.docx
  • 八年级物理上册《第二单元 物态变化》复习要点及自我检测题(无答案) 苏科版.docx八年级物理上册《第二单元 物态变化》复习要点及自我检测题(无答案) 苏科版.docx
  • 八年级物理上册《第一章 机械运动》单元综合测试(2)(无答案) (新版)新人教版.docx八年级物理上册《第一章 机械运动》单元综合测试(2)(无答案) (新版)新人教版.docx
  • 八年级物理上册《第一章 机械运动》单元综合测试(1)(无答案) (新版)新人教版.docx八年级物理上册《第一章 机械运动》单元综合测试(1)(无答案) (新版)新人教版.docx
  • 八年级物理上册《第一章 声现象》自主训练题2(无答案) 苏科版.docx八年级物理上册《第一章 声现象》自主训练题2(无答案) 苏科版.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1