人教版九年级数学上册第二十四章圆专项测评试卷(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 第二 十四 专项 测评 试卷 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知O的半径为4,点O到直线m的距离为d,若直线m与O公共点的个数为2个,则d可取()A5B4.5C4D02、如图,
2、O的半径为5,AB为弦,点C为的中点,若ABC=30,则弦AB的长为()AB5CD53、如图,在中,以点为圆心,为半径的圆与所在直线的位置关系是()A相交B相离C相切D无法判断4、已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()ABCD5、已知中,点P为边AB的中点,以点C为圆心,长度r为半径画圆,使得点A,P在C内,点B在C外,则半径r的取值范围是()ABCD6、如图所示,一个半径为r(r1)的图形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分面积是()ABCD7、如图,螺母的外围可以看作是正六边形ABCDEF,已知这个正六边形的半径是2,则
3、它的周长是()A6B12C12D248、如图,AB是O的直径,点E是AB上一点,过点E作CDAB,交O于点C,D,以下结论正确的是()A若O的半径是2,点E是OB的中点,则CDB若CD,则O的半径是1C若CAB30,则四边形OCBD是菱形D若四边形OCBD是平行四边形,则CAB609、如图,在ABC中,ACB90,ACBC,AB4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为()A2BC2D10、如图,AB是O的直径,BC与O相切于点B,AC交O于点D
4、,若ACB=50,则BOD等于()A40B50C60D80第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_2、如图,PA、PB切O于A、B两点,点C在O上,且PC,则AOB_3、如图,在O中,的度数等于250,半径OC垂直于弦AB,垂足为D,那么AC的度数等于_度4、如图,在中,的半径为点是边上的动点,过点作的一条切线(其中点为切点),则线段长度的最小值为_5、如图,A、B、C、D为一个正多边形的相邻四个顶点,O为
5、正多边形的中心,若ADB=12,则这个正多边形的边数为_三、解答题(5小题,每小题10分,共计50分)1、已知:如图,在O中,AB为弦,C、D两点在AB上,且ACBD求证:2、如图,PA、PB分别切O于A、B,连接PO与O相交于C,连接AC、BC,求证:AC=BC 3、问题提出(1)如图,在ABC中,ABAC10,BC12,点O是ABC的外接圆的圆心,则OB的长为 问题探究(2)如图,已知矩形ABCD,AB4,AD6,点E为AD的中点,以BC为直径作半圆O,点P为半圆O上一动点,求E、P之间的最大距离;问题解决(3)某地有一块如图所示的果园,果园是由四边形ABCD和弦CB与其所对的劣弧场地组成
6、的,果园主人现要从入口D到上的一点P修建一条笔直的小路DP已知ADBC,ADB45,BD120米,BC160米,过弦BC的中点E作EFBC交于点F,又测得EF40米修建小路平均每米需要40元(小路宽度不计),不考虑其他因素,请你根据以上信息,帮助果园主人计算修建这条小路最多要花费多少元?4、(1)课本再现:在中,是所对的圆心角,是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与的位置关系进行分类图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明;(2)知识应用:如图4,若的半径为2,分别与相切于点A,B,求的长5、正方形ABCD的四
7、个顶点都在O上,E是O上的一点(1)如图,若点E在上,F是DE上的一点,DF=BE求证:ADFABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=AE请说明理由;(3)如图,若点E在上连接DE,CE,已知BC=5,BE=1,求DE及CE的长-参考答案-一、单选题1、D【解析】【分析】根据直线和圆的位置关系判断方法,可得结论【详解】直线m与O公共点的个数为2个直线与圆相交d半径4故选D【考点】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设O的半径为r,圆心O到直线l的距离为d直线l和O相交dr直线l和O相切dr,直线l和O相离dr2、D【
8、解析】【分析】连接OC、OA,利用圆周角定理得出AOC=60,再利用垂径定理得出AB即可【详解】连接OC、OA,ABC=30,AOC=60,AB为弦,点C为的中点,OCAB,在RtOAE中,AE=,AB=,故选D【考点】此题考查圆周角定理,关键是利用圆周角定理得出AOC=603、A【解析】【分析】过点C作CDAB于点D,由题意易得AB=5,然后可得,进而根据直线与圆的位置关系可求解【详解】解:过点C作CDAB于点D,如图所示:,根据等积法可得,以点为圆心,为半径的圆,该圆的半径为,圆与AB所在的直线的位置关系为相交,故选A【考点】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题
9、的关键4、B【解析】【分析】根据题意可以求得半径,进而解答即可【详解】因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距sin601,故选B【考点】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距5、D【解析】【分析】根据勾股定理,得AB=5,由P为AB的中点,得CP=,要使点A,P在C内,r3,r4,从而确定r的取值范围.【详解】点A在C内,r3,点B在C外,r4,故选:D.【考点】本题考查了点和圆的位置关系,利用数形结合思想是解题的关键.6、C【解析】【分析】当运动到正六边形的角上时,圆与两边的切点分别为,连接,根据正六边形的性质可知,故,再由
10、锐角三角函数的定义用表示出的长,可知圆形纸片不能接触到的部分的面积,由此可得出结论【详解】解:如图所示,连接,此多边形是正六边形,圆形纸片不能接触到的部分的面积故选:C【考点】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键7、C【解析】【分析】如图,先求解正六边形的中心角,再证明是等边三角形,从而可得答案【详解】解:如图,为正六边形的中心,为正六边形的半径,为等边三角形,正六边形ABCDEF的周长为故选:【考点】本题考查的是正多边形与圆,正多边形的半径,中心角,周长,掌握以上知识是解题的关键8、C【解析】【分析】根据垂径定理,解直角三角形知识,一一求解判断即可【详解】解:A、OC
11、OB2,点E是OB的中点,OE1,CDAB,CEO90,CD2CE, ,本选项错误不符合题意;B、根据,缺少条件,无法得出半径是1,本选项错误,不符合题意;C、A30,COB60,OCOB,COB是等边三角形,BCOC,CDAB,CEDE,BCBD,OCODBCBD,四边形OCBD是菱形;故本选项正确本选项符合题意D、四边形OCBD是平行四边形,OC=OD,所以四边形OCBD是菱形OCBC,OCOB,OCOBBC,BOC60,故本选项错误不符合题意故选:C【考点】本题考查了圆周角定理,垂径定理,菱形的判定和性质,等边三角形的判定和性质,正确的理解题意是解题的关键9、D【解析】【分析】【详解】解
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
