分享
分享赚钱 收藏 举报 版权申诉 / 25

类型人教版八年级数学上册第十二章全等三角形专题测评试题(含答案解析).docx

  • 上传人:a****
  • 文档编号:877359
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:25
  • 大小:579.09KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版八年级上册数学第十二章全等三角形 八年级上册数学人教版 第章 全等三角形 测试第章 全等三角形有答案 试题 第十二章 全等三角形
    资源描述:

    1、八年级数学上册第十二章全等三角形专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知,则的长为()A7B3.5C3D22、如图,AB=AD,BAO=DAO,由此可以得出的全等三角形是()AB

    2、CD3、如图,已知,用尺规作它的角平分线如图,步骤如下:第一步:以B为圆心,以a为半径画弧,分别交射线,于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在内部交于点P;第三步;画射线,射线即为所求下列叙述不正确的是()AB作图的原理是构造三角形全等C由第二步可知,D的长4、如图,在ABC和DEF中,已知AB=DE,BC=EF,根据(SAS)判定ABCDEF,还需的条件是()AA=DBB=ECC=FD以上三个均可以5、如图,在中,平分交于D点,E,F分别是,上的动点,则的最小值为()ABC3D6、如图,OB平分AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O

    3、点都不重合,连接ED、EF若添加下列条件中的某一个就能使DOEFOE,你认为要添加的那个条件是()AOD=OEBOE=OFCODE =OEDDODE=OFE7、如图,在和中,则下列结论中错误的是()ABCDE为BC中点8、如图,已知在四边形中,平分,则四边形的面积是()A24B30C36D429、已知,则为()A锐角三角形B钝角三角形C直角三角形D以上都有可能10、如图,ABCADE,B=80,C=30,DAC=35,则EAC的度数为()A40B30C35D25第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知:如图,ACDC,12,请添加一个已知条件:_,使ABCD

    4、EC2、如图,在中,点,都在边上,若,则的长为_.3、如图所示,在中,B=90,AD平分BAC,交BC于点D,DEAC,垂足为点E,若BD=3,则DE的长为 _4、如图,MNPQ,ABPQ,点A,D,B,C分别在直线MN和PQ上,点E在AB上,ADBC7,ADEB,DEEC,则AB_5、如图,在中,F是高AD和BE的交点,cm,则线段BF的长度为_三、解答题(5小题,每小题10分,共计50分)1、已知:RtABC中,B90,D是BC上一点,DFBC交AC于点H,且DFBC,FGAC交BC于点E求证:ABDE2、如图,在中,是边上的一点,平分,交边于点,连接(1)求证:;(2)若,求的度数3、A

    5、BC、DPC都是等边三角形(1)如图1,求证:APBD;(2)如图2,点P在ABC内,M为AC的中点,连PM、PA、PB,若PAPM,且PB2PM求证:BPBD;判断PC与PA的数量关系并证明4、在湖的两岸A、B间建一座观赏桥,由于条件限制,无法直接度量A、B两点间的距离请你用学过的数学知识按以下要求设计一测量方案(1)画出测量图案;(2)写出测量步骤(测量数据用字母表示);(3)计算AB的距离(写出求解或推理过程,结果用字母表示)5、如图,ABADBCDC,CDABEBAD90,点E、F分别在边BC、CD上,EAF45,过点A作GABFAD,且点G在CB的延长线上(1)GAB与FAD全等吗?

    6、为什么?(2)若DF2,BE3,求EF的长-参考答案-一、单选题1、C【解析】【分析】利用全等三角形的性质求解即可【详解】解:ABCDAE,AC=DE=5,AE=BC=2,CE=AC-AE=3,故选C【考点】本题主要考查了全等三角形的性质,熟知全等三角形对应边相等是解题的关键2、B【解析】【分析】观察图形,运用SAS可判定ABO与ADO全等【详解】解:AB=AD,BAO=DAO,AO是公共边,ABOADO (SAS)故选B【考点】本题考查全等三角形的判定,属基础题,比较简单3、D【解析】【分析】根据用尺规作图法画已知角的角平分线的基本步骤判断即可【详解】解:A、以a为半径画弧,故正确B、根据作

    7、图步骤可知BD=BE,PD=PE,BP=BP,BDPBEP(SSS),故正确C、分别以D,E为圆心,以b为半径画弧,两弧在内部交于点P,故正确D、分别以D,E为圆心,以b为半径画弧,其中,否则两个圆弧没有交点,故错误故选:D【考点】本题考查用尺规作图法画已知角的角平分线及理论依据,熟练尺规作图的基本步骤是关键4、B【解析】【分析】根据三角形全等的判定中的SAS,即两边夹角已知两条边相等,只需要它们的夹角相等即可【详解】要使两三角形全等,已知AB=DE,BC=EF,要用SAS判断,还差夹角,即B=E故选:B【考点】本题考查了三角形全等的判定方法三角形全等的判定是中考的热点,一般以考查三角形全等的

    8、方法为主5、D【解析】【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF的最小值即为点C到AB的垂线段长度【详解】在AB上取一点G,使AGAF在RtABC中,ACB90,AC3,BC4AB=5,CADBAD,AEAE,AEFAEG(SAS)FEGE,要求CE+EF的最小值即为求CE+EG的最小值,故当C、E、G三点共线时,符合要求,此时,作CHAB于H点,则CH的长即为CE+EG的最小值,此时,CH=,即:CE+EF的最小值为,故选:D【考点】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键6、D【解析】【分析】根据OB平分AOC得AOB=BOC,又因为O

    9、E是公共边,根据全等三角形的判断即可得出结果【详解】解:OB平分AOCAOB=BOC当DOEFOE时,可得以下结论:OD=OF,DE=EF,ODE=OFE,OED=OEFA答案中OD与OE不是DOEFOE的对应边,A不正确;B答案中OE与OF不是DOEFOE的对应边,B不正确;C答案中,ODE与OED不是DOEFOE的对应角,C不正确;D答案中,若ODE=OFE,在DOE和FOE中, DOEFOE(AAS)D答案正确故选:D【考点】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键7、D【解析】【分析】首先证明,推出,由,推出,推出,即可一一判断【详解】解:,和为直角三角形,

    10、在和中, , , , 故A、B、C正确,故选:D【考点】本题主要考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质8、B【解析】【分析】过D作DEAB交BA的延长线于E,根据角平分线的性质得到DE=CD=4,根据三角形的面积公式即可得到结论【详解】如图,过D作DEAB交BA的延长线于E,BD平分ABC,BCD=90,DE=CD=4,四边形的面积 故选B.【考点】本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键9、C【解析】【分析】根据A和B的度数可得与互余,从而得出为直角三角形【详解】解:,即与互余,则为直角三角形,故选C【考点】此题考查的是直角三

    11、角形的判定,掌握有两个内角互余的三角形是直角三角形是解决此题的关键10、C【解析】【分析】根据三角形的内角和定理列式求出BAC,再根据全等三角形对应角相等可得DAE=BAC,然后根据EAC=DAE-DAC代入数据进行计算即可得解【详解】解:B=80,C=30,BAC=180-80-30=70,ABCADE,DAE=BAC=70,EAC=DAE-DAC,=70-35,=35故选C【考点】本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键二、填空题1、【解析】【分析】已知给出了12,可得三角形中一对应角相等,又有一边对应相等,根据边角边判定定理,补充BCAC可得ABCDEC答案可

    12、得【详解】解:12,BCAECD,又ACDC,添加BCCE,ABCDEC(SAS)故答案为:BCEC【考点】此题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL解题的关键是添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件2、9.【解析】【分析】根据等腰三角形的性质及全等三角形的判定与性质即可求解.【详解】因为ABC是等腰三角形,所以有AB=AC,BAD=CAE,ABD=ACE,所以ABDACE(ASA),所以BD=EC,EC=9.【考点】此题主要考查等腰三角形的性质,解题的关键是熟知全等三角形的判定与

    13、性质.3、3【解析】【分析】根据角平分线的性质,即角平分线上任意一点到角两边的距离相等计算即可;【详解】在中,B=90,AD平分BAC,DEAC,;故答案是3【考点】本题主要考查了角平分线的性质应用,准确计算是解题的关键4、7【解析】【详解】由MNPQ,ABPQ,可知DAE=EBC=90,可判定ADEBCE,从而得出AE=BC,则AB=AE+BE=AD+BC=7故答案为:7.点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单5、8 cm【解析】【分析】先求,推导出,再求出,根据ASA证明,即可得出答案【详解】,在BFD和ACD中,(ASA),cm故答案为:8cm【

    14、考点】本题考查了全等三角形的性质和判定,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等三、解答题1、见解析【解析】【分析】根据DFBC,FGAC,可得,由对顶角相等可得,进而根据等角的余角相等可得,再利用ASA证明,即可得证【详解】证明: DFBC,FGAC,又在与中(ASA) ABDE【考点】本题考查了三角形全等的性质与判定,等角的余角相等,掌握全等三角形的性质与判定是解题的关键2、 (1)见解析(2)50【解析】【分析】(1)根据平分,可得,即可求证;(2)根据全等三角形的性质可得,再由三角形外角的性质,即可求解(1)明:平分, 在和中,;(2)解:,【考点】

    15、本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键3、 (1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【解析】【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接CK证明AMPCMK(SAS),推出MP=MK,AP=CK,APM=K=90,再证明PDBPCK(SSS),可得结论;结论:PC=2PA想办法证明DPB=30,可得结论(1)证明:如图1中,ABC,CDP都是等边三角形,CB=CA,CD=CP,ACB=DCP=60,BCD=ACP,在BCD和ACP中,BCDACP(SAS),BD=

    16、AP;(2)证明:如图2中,延长PM到K,使得MK=PM,连接CKAPPM,APM=90,在AMP和CMK中,AMPCMK(SAS),MP=MK,AP=CK,APM=K=90,同法可证BCDACP,BD=PA=CK,PB=2PM,PB=PK,PD=PC,PDBPCK(SSS),PBD=K=90,PBBD解:结论:PC=2PAPDBPCK,DPB=CPK,设DPB=CPK=x,则BDP=90-x,APC=CDB,90+x=60+90-x,x=30,DPB=30,PBD=90,PD=2BD,PC=PD,BD=PA,PC=2PA【考点】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的

    17、性质,直角三角形30角的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题4、(1)见解析;(2)见解析;(3)设DC=m,则AB= m【解析】【分析】本题让我们了解测量两点之间的距离的一种方法,设计时,只要符合全等三角形全等的条件,方案具有可操作性,需要测量的线段在陆地一侧可实施,就可以达到目的【详解】解:(1)见图:(2)在湖岸上选一点O,连接BO并延长到C使BO=OC,连接AO并延长到点D使OD=AO,连接CD,则AB= CD测量DC的长度即为AB的长度;(3)设DC=mBO=CO,AOB=COD,AO=DOAOBCOD(SAS)AB=CD=m【考点】本题考查了全等三角形

    18、的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系5、(1)全等,理由详见解析;(2)5【解析】【分析】(1)由题意易得ABG90D,然后问题可求证;(2)由(1)及题意易得GAEFAE,GBDF,进而问题可求解【详解】解:(1)全等理由如下DABE90,ABG90D,在ABG和ADF中,GABFAD(ASA);(2)BAD90,EAF45,DAF+BAE45,GABFAD,GABFAD,AGAF,GAB+BAE45,GAE45,GAEEAF,在GAE和FAE中,GAEFAE(SAS)EFGEGABFAD,GBDF,EFGEGB+BEFD+BE2+35【考点】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版八年级数学上册第十二章全等三角形专题测评试题(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-877359.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1