全国通用2022版高考数学大二轮总复习增分策略专题四数列推理与证明第2讲数列的求和问题试题.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用 2022 高考 数学 二轮 复习 策略 专题 数列 推理 证明 求和 问题 试题
- 资源描述:
-
1、第2讲数列的求和问题1(2022福建)在等差数列an中,a24,a4a715.(1)求数列an的通项公式;(2)设bnn,求b1b2b3b10的值2(2022课标全国)已知an是递增的等差数列,a2,a4是方程x25x60的根(1)求an的通项公式;(2)求数列的前n项和高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求一般数列的和,体现转化与化归的思想.热点一分组转化求和有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并例1等比数列an中,a1,a2,a3分别是下表第一、二、三行
2、中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(1)求数列an的通项公式;(2)若数列bn满足:bnan(1)nln an,求数列bn的前n项和Sn.思维升华在处理一般数列求和时,一定要注意使用转化思想把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数n进行讨论,最后再验证是否可以合并为一个公式跟踪演练1在等差数列an中,a3a4a584,a973.(1)求数列an的通项公式;
3、(2)对任意mN*,将数列an中落入区间(9m,92m)内的项的个数记为bm,求数列bm的前m项和Sm.热点二错位相减法求和错位相减法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列anbn的前n项和,其中an,bn分别是等差数列和等比数列例2(2022衡阳联考)已知数列an的前n项和为Sn,且有a12,3Sn5anan13Sn1(n2)(1)求数列an的通项公式;(2)若bn(2n1)an,求数列bn的前n项和Tn.思维升华(1)错位相减法适用于求数列anbn的前n项和,其中an为等差数列,bn为等比数列;(2)所谓“错位”,就是要找“同类项”相减要注意的是相减后得到部分,
4、求等比数列的和,此时一定要查清其项数(3)为保证结果正确,可对得到的和取n1,2进行验证跟踪演练2设数列an的前n项和为Sn,已知a11,Sn12Snn1(nN*),(1)求数列an的通项公式;(2)若bn,求数列bn的前n项和Tn.热点三裂项相消法求和裂项相消法是指把数列和式中的各项分别裂开后,某些项可以相互抵消从而求和的方法,主要适用于或(其中an为等差数列)等形式的数列求和例3(2022韶关高三联考)已知在数列an中,a11,当n2时,其前n项和Sn满足San(Sn)(1)求Sn的表达式;(2)设bn,数列bn的前n项和为Tn,证明Tn.思维升华(1)裂项相消法的基本思想就是把通项an分
5、拆成anbnkbn(k1,kN*)的形式,从而达到在求和时某些项相消的目的,在解题时要善于根据这个基本思想变换数列an的通项公式,使之符合裂项相消的条件(2)常化的裂项公式();();()跟踪演练3(1)已知数列an,an,其前n项和Sn9,则n_.(2)(2022江苏)设数列an满足a11,且an1ann1(nN*),则数列前10项的和为_.1已知数列an的通项公式为an,其前n项和为Sn,若存在实数M,满足对任意的nN*,都有Sn0),且4a3是a1与2a2的等差中项(1)求an的通项公式;(2)设bn,求数列bn的前n项和Tn.提醒:完成作业专题四第2讲二轮专题强化练专题四 第2讲数列的
6、求和问题A组专题通关1已知数列1,3,5,7,则其前n项和Sn为()An21 Bn22Cn21 Dn222已知在数列an中,a160,an1an3,则|a1|a2|a3|a30|等于()A445 B765C1 080 D3 1053在等差数列an中,a12 012,其前n项和为Sn,若2 002,则S2 014的值等于()A2 011 B2 012C2 014 D2 0134已知数列an满足a11,a23,an1an1an(n2),则数列an的前40项和S40等于()A20 B40C60 D805(2022曲靖一模)的值为()A. B.C.() D.6设f(x),若Sf()f()f(),则S_
7、.7(2022辽宁五校协作体联考)在数列an中,a11,an2(1)nan1,记Sn是数列an的前n项和,则S60_.8设Sn为数列an的前n项和,若(nN*)是非零常数,则称该数列为“和等比数列”;若数列cn是首项为2,公差为d(d0)的等差数列,且数列cn是“和等比数列”,则d_.9(2022北京)已知an是等差数列,满足a13, a412,数列bn满足b14,b420,且bnan为等比数列(1)求数列an和bn的通项公式;(2)求数列bn的前n项和10(2022山东)设数列an的前n项和为Sn.已知2Sn3n3.(1)求数列an的通项公式;(2)若数列bn满足anbnlog3an,求bn
8、的前n项和Tn.B组能力提高11数列an满足a12,an,其前n项积为Tn,则T2 016等于()A. BC1 D112已知数列an满足an1,且a1,则该数列的前2 016项的和等于()A1 509 B3 018C1 512 D2 01613已知lg xlg y1,且Snlg xnlg(xn1y)lg(xn2y2)lg yn,则Sn_.14(2022湖南)设数列an的前n项和为Sn,已知a11,a22,且an23SnSn13, nN*.(1)证明:an23an;(2)求Sn.学生用书答案精析第2讲数列的求和问题高考真题体验1解(1)设等差数列an的公差为d,由已知得解得所以ana1(n1)d
9、n2.(2)由(1)可得bn2nn,所以b1b2b3b10(21)(222)(233)(21010)(22223210)(12310)(2112)55211532 101.2解(1)方程x25x60的两根为2,3,由题意得a22,a43.设数列an的公差为d,则a4a22d,故d,从而a1.所以an的通项公式为ann1.(2)设的前n项和为Sn.由(1)知,则Sn,Sn.两式相减得Sn()(1).所以Sn2.热点分类突破例1解(1)当a13时,不合题意;当a12时,当且仅当a26,a318时,符合题意;当a110时,不合题意因此a12,a26,a318,所以公比q3.故an23n1 (nN*)
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-913045.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
四年级上册语文课件-19《秦兵马俑》|人教新课标(共32张PPT).ppt
