北师大版八年级上册 2.2.2 平方根(教案).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 年级 上册 2.2 平方根 教案
- 资源描述:
-
1、2.2.2平方根教学目标知识与技能:1.了解数的平方根、开平方的概念,会用根号表示一个非负数的平方根.2.了解开方与乘方是互逆的运算,会利用这个互逆的关系求某些非负数的平方根.过程与方法:经历平方根概念的形成过程,发展求同和求异的思想,通过比较,提高思考问题、辨析问题的能力.情感态度与价值观:在学习的过程中,养成严谨的科学态度.教学重难点重点:1.数的平方根的概念,会用根号表示一个非负数的平方根.2.(a)2=a(a0)的得出和应用.难点:1.开方与乘方是互逆的运算,会利用这个互逆的关系求某些非负数的平方根.2.(a)2=a(a0)和a2=|a|的区别和联系.教学准备教师准备:练习题的多媒体课
2、件.学生准备:复习算术平方根的概念.教学过程一、 导入新课过渡语上节学习了算术平方根,首先我们复习一下.导入一:1.什么叫算术平方根?3的平方等于9,那么9的算术平方根就是3.25的平方等于 425,那么425的算术平方根就是25.展厅的地面为正方形,其面积为49平方米,则其边长为7米.2.到目前为止,我们已学过哪些运算?这些运算之间的关系如何?平方有没有逆运算? 平方与算术平方根之间是什么关系?【例如】正方形ABCD的面积为1,则边长为1.将它扩展,若其面积变为原来的2倍,则边长为2;若其面积变为原来的3倍,则边长为3;若其面积变为原来的n倍,则边长为n.导入二:【问题】平方等于9,425,
3、49的数还有吗?回忆在七年级学习有理数的平方时,我们是如何找到平方等于9,425,49的数的?根据平方的定义,32=9,(-3)2=9,252=425,-252=425,72=49,(-7)2=49.设计意图这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识、熟悉它们的互化关系.并把上节课的思考题制作成Flash情景引入,增加动画效果. 借助多媒体吸引学生的注意力,激发学生的学习兴趣.【说明】数学知识源于生活,并服务于生活.这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈欲望.二、构建
4、新知一、共同探究思路一:过渡语根据我们的实践,平方为9的数不只有3,那请同学们填写下面的空.填空.形成概念:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫做二次方根).表达式为:若x2=a,则x叫做a的平方根.记作a.【例如】(4)2 =16,则+4和-4都是16的平方根,即16的平方根是4.4是16的算术平方根.【结论】一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根.【定义】求一个数a的平方根的运算,叫做开平方,a叫做被开方数.思路二:前面我们学习算术平方根,知道9的算术平方根是3,根据七年级我们学过的平方的意义,-3的平方也是9,也就是
5、说,平方为9的数有两个:3和-3.一个正数a的算术平方根有一个,通过进一步的思考知道平方为a的数有两个,另外一个我们也不能把它给丢了,今天再学习一个平方根的概念.过渡语知道了平方根的定义,和我们上一节学习的算术平方根的联系和区别是什么呢?给出几组具体的数据,由平方探知开平方与平方的互逆关系.平方根与算术平方根的联系与区别.【联系】1.包含关系:平方根包含算术平方根,算术平方根是平方根的一种.2.只有非负数才有平方根和算术平方根.3.0的平方根是0,算术平方根也是0.【区别】1.个数不同:一个正数有两个平方根,但只有一个算术平方根.2.表示法不同:平方根表示为 a,而算术平方根表示为a.设计意图
6、形成“平方根”的概念.在列举一些具体数据的感性认识的基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化,并明白它们之间的互逆关系,辨析概念 “平方根”与 “算术平方根”的区别与联系,使之与上节课紧密联系. 由于遵循了从具体到抽象的过程,注重学生原有认知基础的回顾,并和原有的概念进行了比较与辨析,因此,学生对这一抽象的概念掌握得比较牢靠.【说明】平方根与算术平方根的区别是本节课的一大难点,也是学生经常容易出错的地方.对这两个概念加以比较与区别有利于学生的理解与掌握.二、例题讲解(教材例3)求下列各数的平方根.(1)64;(2)49121;(3)0.0004;
7、(4)(-25)2;(5) 11.解:(1)因为(8)2=64,所以64的平方根是8,即64=8.(2)因为7112=49121,所以49121的平方根是711,即 49121=711.(3)因为(0.02)2=0.0004,所以0.0004的平方根是0.02,即0.0004=0.02.(4)因为(25)2=(-25)2,所以(-25)2的平方根是25, 即(-25)2=25.(5)11的平方根是11.设计意图通过例题的讲解,要求学生能正确掌握平方根的文字说理及符号化的表达.能熟练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数.知识拓展平方根的性质:(1)一个正数a有
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
