北师大版八年级数学上册第一章勾股定理定向训练试卷(附答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 八年 级数 上册 第一章 勾股定理 定向 训练 试卷 答案 详解
- 资源描述:
-
1、北师大版八年级数学上册第一章勾股定理定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,cm,cm,点、分别在、边上现将沿翻折,使点落在点处连接,则长度的最小值为()A0B2C4D62、如
2、图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A10mB15mC18mD20m3、如图,中,将折叠,使点C与的中点D重合,折痕交于点M,交于点N,则线段的长为().ABC3D4、如图,在中,平分交于D点,E,F分别是,上的动点,则的最小值为()ABC3D5、如图,在由边长为1的7个正六边形组成的网格中,点A,B在格点上若再选择一个格点C,使ABC是直角三角形,且每个直角三角形边长均大于1,则符合条件的格点C的个数是()A2B4C5D66、已知点是平分线上的一点,且,作于点,点是射线上的一个动点,若,则的最小值为()A2B3
3、C4D57、如图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形的两直角边分别是a、b,且,大正方形的面积是9,则小正方形的面积是()A3B4C5D68、如图,在22的正方形网格中有9个格点,已经取定点A和B,在余下的点中任取一点C,使ABC为直角三角形的概率是()ABCD9、如图,以RtABC的两直角边为边向外作正方形,其面积分别为S1,S2,若S18cm2,S217cm2,则斜边AB的长是()A3cmB6cmC4cmD5cm10、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子
4、斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A0.7米B1.5米C2.2米D2.4米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把一根长12厘米的木棒,从一端起顺次截下3厘米和5厘米的两段,用得到的三根木棒首尾依次相接,摆成的三角形形状是_2、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为_尺3、如图,在的正方形网格中,每个小正方形的顶点称为格点,点、均在格点上,则_4、如图,在中,分别以,边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月
5、牙”,当,时,阴影部分的面积为_5、在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离有5米则旗杆的高度_三、解答题(5小题,每小题10分,共计50分)1、在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中ABAC,由于种种原因,由C到A的路现在已经不通了,某村为方便村民取水决定在河边新建一个取水点H(A,H,B在一条直线上),并新修一条路CH,测得CB3千米,CH2.4千米,HB1.8千米(1)问CH是不是从村庄C到河边的最近路,请通过计算加以说明;
6、(2)求原来的路线AC的长2、如图,已知等腰ABC的底边BC=10cm,D是腰AC上一点,且CD=6cm,BD=8cm(1)判断BCD的形状,并说明理由;(2)求ABC的周长3、已知a,b,c为ABC的三边,且满足a2c2b2c2a4b4,试判定ABC的形状4、细心观察图形,认真分析各式,然后解答问题OA22=,;OA32=12+,;OA42=12+,(1)请用含有n(n是正整数)的等式表示上述变规律:OAn2=_;Sn=_(2)求出OA10的长(3)若一个三角形的面积是,计算说明他是第几个三角形?(4)求出S12+S22+S32+S102的值5、如图,点是正方形内一点,将绕点顺时针旋转到的位
7、置,若,求的度数-参考答案-一、单选题1、C【解析】【分析】当H落在AB上,点D与B重合时,AH长度的值最小,根据勾股定理得到AB=10cm,由折叠的性质知,BH=BC=6cm,于是得到结论【详解】解:当H落在AB上,点D与B重合时,AH长度的值最小,C=90,AC=8cm,BC=6cm,AB=10cm,由折叠的性质知,BH=BC=6cm,AH=AB-BH=4cm故选:C【考点】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键2、C【解析】【详解】树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,AC=13m,这棵树原来的高度=BC+AC=5+
8、13=18m故选C3、D【解析】【分析】由折叠的性质可得DN=CN,根据勾股定理可求DN的长,即可得出结果【详解】解:D是AB中点,AB=4,AD=BD=2,将ABC折叠,使点C与AB的中点D重合,DN=CN,BN=BC-CN=6-DN,在RtDBN中,DN2=BN2+DB2,DN2=(6-DN)2+4,DN=,CN=DN=,故选:D【考点】本题考查了翻折变换、折叠的性质、勾股定理,熟练运用折叠的性质是本题的关键4、D【解析】【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF的最小值即为点C到AB的垂线段长度【详解】在AB上取一点G,使AGAF在RtABC中,ACB90,AC3,
9、BC4AB=5,CADBAD,AEAE,AEFAEG(SAS)FEGE,要求CE+EF的最小值即为求CE+EG的最小值,故当C、E、G三点共线时,符合要求,此时,作CHAB于H点,则CH的长即为CE+EG的最小值,此时,CH=,即:CE+EF的最小值为,故选:D【考点】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键5、D【解析】【分析】分三种情况讨论,当A=90,或B=90,或C=90时,分别画出符合条件的图形,即可解答【详解】解:分三种情况讨论,当A=90,或B=90,或C=90如图 符合条件的格点C的个数是6个故选:D【考点】本题考查正多边形和圆的性质、直角三角形
10、的判定与性质、直径所对的圆周角是90等知识,是基础考点,掌握相关知识是解题关键6、B【解析】【分析】根据垂线段最短可得PNOA时,PN最短,再根据角平分线上的点到角的两边的距离相等可得PM=PN,再结合勾股定理求解即可【详解】解:当PNOA时,PN的值最小,OC平分AOB,PMOB,PM=PN,由勾股定理可知:PM=3,PN的最小值为3故选B【考点】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质及勾股定理,熟记性质是解题的关键7、A【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知(a+b)2=15,大正方形的面积为9,可以得出直角
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
救治中小微企业亟待“扩容疗法”.pdf
