分享
分享赚钱 收藏 举报 版权申诉 / 26

类型北师大版八年级数学上册第一章勾股定理定向训练试题(含答案解析).docx

  • 上传人:a****
  • 文档编号:938034
  • 上传时间:2025-12-19
  • 格式:DOCX
  • 页数:26
  • 大小:928.38KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    北师大 八年 级数 上册 第一章 勾股定理 定向 训练 试题 答案 解析
    资源描述:

    1、北师大版八年级数学上册第一章勾股定理定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,两直角边,现将AC沿AD折叠,使点C落在斜边AB上的点E处,则CD长为()ABCD2、如图,三角形纸

    2、片ABC,点D是BC边上一点,连接AD,把ABD沿着AD翻折,得到AED,DE与AC交于点G,连接BE交AD于点F.若DGGE,AF6,BF4,ADG的面积为8,则点F到BC的距离为()ABCD3、在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A4B5C6D74、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底墙到左墙角的距离为1.5m,顶端距离地面2m,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面0.7m,那么小巷的宽度为()A3.2mB3.5mC3.9

    3、mD4m5、已知点是平分线上的一点,且,作于点,点是射线上的一个动点,若,则的最小值为()A2B3C4D56、我国古代数学名著算法统宗有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地送行二步与人齐,5尺人高曾记,仕女家人争蹴良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离的长为尺,将它向前水平推送尺时,即尺,秋千踏板离地的距离和身高尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”,设秋千的绳索长为尺,根据题意可列方程为()ABCD7、在直角三角形中,若勾为3,股为4,则弦为()A5B6C7D88、下列各组数:3、4、54、5、62.5、6

    4、、6.58、15、17,其中是勾股数的有()A4组B3组C2组D1组9、下面各图中,不能证明勾股定理正确性的是()ABCD10、如图,在ABC中,AD,BE分别是BC,AC边上的中线,且ADBE,垂足为点F,设BCa,ACb,ABc,则下列关系式中成立的是()Aa2+b25c2Ba2+b24c2Ca2+b23c2Da2+b22c2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小聪准备测量河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,把竹竿的顶端拉向岸边,竹竿顶和岸边的水面刚好相齐,则河水的深度为_2、如图,在的网格中每个小正方形的边长都为1,的顶点、都在格

    5、点上,点为边的中点,则线段的长为_3、如图,一艘轮船位于灯塔P的南偏东方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东方向上的B处,此时B处与灯塔P的距离为_海里(结果保留根号)4、如图,已知四边形中,则四边形的面积等于_.5、如图,在网格中,每个小正方形的边长均为1点A、B,C都在格点上,若BD是ABC的高,则BD的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即,求这棵树在离地面多高处被折断(即求AC的长度)?2、如图,已知半径为5的M经过x轴上一点C,与y轴交

    6、于A、B两点,连接AM、AC,AC平分OAM,AOCO6(1)判断M与x轴的位置关系,并说明理由;(2)求AB的长;(3)连接BM并延长交圆M于点D,连接CD,求直线CD的解析式3、我市道路交通管理条例规定:小汽车在城市街道上的行驶速度不得超过60km/h如图,一辆小汽车在一条城市街道上沿直道行驶,某一时刻刚好行驶到车速检测点A正前方30m的C处,2秒后又行驶到与车速检测点A相距50m的B处请问这辆小汽车超速了吗?若超速,请求出超速了多少?4、台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且

    7、点C与直线AB上两点A、B的距离分别为300km和400km,又AB500km,以台风中心为圆心周围250km以内为受影响区域(1)海港C会受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?5、已知,如图,C为上一点,与相交于点F,连接,(1)求证:;(2)已知,求的长度-参考答案-一、单选题1、A【解析】【分析】先根据勾股定理求得AB的长,再根据折叠的性质求得AE,BE的长,从而利用勾股定理可求得CD的长【详解】解:AC6cm,BC8cm,C90,AB(cm),由折叠的性质得:AEAC6cm,AEDC90,BE10cm6cm4cm,BED90,设CDx,

    8、则BDBCCD8x,在RtDEB中,BE2DE2BD2,即42x2(8x)2,解得:x3,CD3cm,故选:A【考点】本题考查了折叠的性质,勾股定理等知识;熟记折叠性质并表示出RtDEB的三边,然后利用勾股定理列出方程是解题的关键2、C【解析】【分析】先求出ABD的面积,根据三角形的面积公式求出DF,设点F到BD的距离为h,根据BDhBFDF,求出BD即可解决问题【详解】解:DGGE,SADGSAEG8,SADE16,由翻折可知,ADBADE,BEAD,SABDSADE16,BFD90,(AF+DF)BF16,(6+DF)416,DF2,DB,设点F到BD的距离为h,则有BDhBFDF,h42

    9、,h,点F到BC的距离为故选:C【考点】此题考查了翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题3、A【解析】【详解】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A【考点】勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方和这里,边的平方的几何意义就是以该边为边的正方形的面积4、C【解析】【分析】如图,在RtACB中,先根据勾股定理求出AB,然后在RtABD中根据勾股定理求出BD,进而可得答案【详解】解:如图,在RtACB中,ACB9

    10、0,BC1.5米,AC2米,AB21.52+226.25,AB=2.5米,在RtABD中,ADB90,AD0.7米,BD2+AD2AB2,BD2+0.726.25,BD25.76,BD0,BD2.4米,CDBC+BD1.5+2.43.9米故选:C【考点】本题考查了勾股定理的应用,正确理解题意、熟练掌握勾股定理是解题的关键5、B【解析】【分析】根据垂线段最短可得PNOA时,PN最短,再根据角平分线上的点到角的两边的距离相等可得PM=PN,再结合勾股定理求解即可【详解】解:当PNOA时,PN的值最小,OC平分AOB,PMOB,PM=PN,由勾股定理可知:PM=3,PN的最小值为3故选B【考点】本题

    11、考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质及勾股定理,熟记性质是解题的关键6、C【解析】【分析】根据勾股定理列方程即可得出结论【详解】解:由题意知:OC=x-(5-1),PC=10,OP=x,在RtOCP中,由勾股定理得:x-(5-1)2+102=x2即故选:C【考点】本题主要考查了勾股定理的应用,读懂题意是解题的关键7、A【解析】【分析】直接根据勾股定理求解即可【详解】解:在直角三角形中,勾为3,股为4,弦为,故选A【考点】本题考查了勾股定理,熟练掌握勾股定理是解题的关键8、C【解析】【详解】解:32+42=52,符合勾股数的定义;42+5262,不符合勾股数的定义;2

    12、.5和6.5不是正整数,不符合勾股数的定义;82+152=172,符合勾股数的定义,是勾股数的有:,共2组,故选:C9、C【解析】【分析】把各图中每一部分的面积和整体的面积分别列式表示,根据每一部分的面积之和等于整体的面积,分别化简,再根据化简结果即可解答.【详解】解:A、+c2+ab(a+b)(a+b),整理得:a2+b2c2,即能证明勾股定理,故本选项不符合题意;B、4 +(ba)2c2,整理得:a2+b2c2,即能证明勾股定理,故本选项不符合题意;C、根据图形不能证明勾股定理,故本选项符合题意;D、4 +c2(a+b)2,整理得:a2+b2c2,即能证明勾股定理,故本选项不符合题意;故选

    13、C【考点】本题考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.10、A【解析】【详解】设EFx,DFy,根据三角形重心的性质得AF2y,BF2EF2x,利用勾股定理得到4x2+4y2c2,4x2+y2b2,x2+4y2a2,然后利用加减消元法消去x、y得到a、b、c的关系【解答】解:设EFx,DFy,AD,BE分别是BC,AC边上的中线,点F为ABC的重心,AFACb,BDa,AF2DF2y,BF2EF2x,ADBE,AFBAFEBFD90,在RtAFB中,4x2+4y2c2,在RtAEF中,4x2+y2b2,在RtBFD中,x2+4y2a2,+得5x2+5y2(a2+b2),4x2

    14、+4y2(a2+b2),得c2(a2+b2)0,即a2+b25c2故选:A【点评】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1 也考查了勾股定理二、填空题1、2【解析】【分析】根据河水深度、竹竿到岸边的距离、竹竿长构成直角三角形,利用勾股定理进行计算即可【详解】根据题意画出示意图,如图,则AC=0.5m,所以BC即为河水深度,是直角三角形,解得:BC=2(m),故答案为:2【考点】本题考查了勾股定理,根据题意画示意图找出与所求边长相关线段所构成直角三角形是解题关键2、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,则AC2+BC2=AB2

    15、,再由勾股定理的逆定理证明ABC是直角三角形,然后由直角三角形斜边上的中线性质即可得出答案【详解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,AC2+BC2=AB2,ABC是直角三角形,ACB=90,AB=5,点O为AB边的中点,CO=AB=2.5,故答案为:2.5【考点】本题考查了勾股定理、勾股定理的逆定理以及直角三角形斜边上的中线性质等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键3、【解析】【分析】先作PCAB于点C,然后利用勾股定理进行求解即可【详解】解:如图,作PCAB于点C,在RtAPC中,AP=50海里,APC=90-60=

    16、30,海里,海里,在RtPCB中,PC=海里,BPC=90-45=45,PC=BC=海里,海里,故答案为:【考点】此题主要考查了勾股定理的应用-方向角问题,求三角形的边或高的问题一般可以转化为用勾股定理解决问题,解决的方法就是作高线4、36【解析】【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出ACD的形状,最后利用三角形的面积公式求解即可【详解】连接AC,如下图所示:ABC=90,AB=3,BC=4,AC=,在ACD中,AC2+AD2=25+144=169=CD2,ACD是直角三角形,S四边形ABCD=ABBC+ACAD=34+512=36.【考点】本题考查了勾股

    17、定理及勾股定理的逆定理,正确作出辅助线是解题的关键.5、#【解析】【分析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论【详解】解:由勾股定理得:AC=,SABC=34-12-32-24=4,ACBD=4,2BD=4,BD=,故答案为:【考点】本题考查了勾股定理,三角形的面积的计算,掌握勾股定理是解题的关键三、解答题1、这棵树在离地面6米处被折断【解析】【分析】设,利用勾股定理列方程求解即可.【详解】解:设,在中,答:这棵树在离地面6米处被折断【考点】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键直角三角形两条直角边的平方和等于斜边的平方 当题

    18、目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解有时也可以利用勾股定理列方程求解2、 (1)M与x轴相切,理由见解析(2)6(3)【解析】【分析】(1)连接CM,证CMx即可得出结论;(2)过点M作MNAB于N,证四边形OCMN是矩形,得MN=OC,ON=OM=5,设AN=x,则OA=5-x,MN=OC=6-(5-x)=1+x,利用勾股定理求出x值,即可求得AN值,再由垂径定理得AB=2AN即可求解;(3)连接BC,CM,过点D作DPCM于P,得直角三角形BCD,由(2)知:AB=6,OA=2,OC=4,所以OB=8,C(4,0),在RtBOC中,BOC=90,由勾股

    19、定理,求得BC=,在RtBCD中,BCD=90,由勾股定理,即可求得CD,在RtCPD和在RtMPD中,由勾股定理,求得CP=2,PD=4,从而得出点D坐标,然后用待定系数法求出直线CD解析式即可(1)解:M与x轴相切,理由如下:连接CM,如图,MC=MA,MCA=MAC,AC平分OAM,MAC=OAC,MCA=OAC,OAC+ACO=90,MCO=MCA+ACO=OAC+ACO=90,MC是M的半径,点C在x轴上,M与x轴相切;(2)解:如图,过点M作MNAB于N,由(1)知,MCO=90,MNAB于N,MNO=90,AB=2AN,CON=90,CMN=90,四边形OCMN是矩形,MN=OC

    20、,ON=CM=5,OA+OC=6,设AN=x,OA=5-x,MN=OC=6-(5-x)=1+x,在RtMNA中,MNA=90,由勾股定理,得x2+(1+x)2=52,解得:x1=3,x2=-4(不符合题意,舍去),AN=3,AB=2AN=6;(3)解:如图,连接BC,CM,过点D作DPCM于P,由(2)知:AB=6,OA=2,OC=4,OB=8,C(4,0)在RtBOC中,BOC=90,由勾股定理,得BC=,BD是M的直径,BCD=90,BD=10,在RtBCD中,BCD=90,由勾股定理,得CD=,即CD2=20,在RtCPD中,由勾股定理,得PD2=CD2-CP2=20-CP2,在RtMP

    21、D中,由勾股定理,得PD2=MD2-MP2=MD2-(MC-CP)2=52-(5-CP)2=10CP-CP2,20-CP2=10CP-CP2,CP=2,PD2=20-CP2=20-4=16,PD=4,即D点横坐标为OC+PD=4+4=8,D(8,-2),设直线CD解析式为y=kx+b,把C(4,0),D(8,-2)代入,得,解得:,直线CD的解析式为:【考点】本题考查直线与圆相切的判定,勾股定理,圆周角定理的推论,垂径定理,待定系数法求一次函数解析式,熟练掌握直线与圆相切的判定、待定系数法求一次函数解析式的方法是解题的关键3、超速了,超速了12km/h【解析】【分析】由勾股定理可求得小汽车行驶

    22、的距离,再除以小汽车行驶的时间即为小汽车行驶的车速,再与限速比较即可【详解】.解:由已知得在直角三角形ABC中AB2AC2BC2BC2AB2AC2,又726012km/h这辆小汽车超速了,超速了12km/h【考点】本题考查了勾股定理,其中1 米/秒=3.6 千米/时的速度换算是易错点4、(1)会,理由见解析;(2)7h【解析】【分析】(1)利用勾股定理的逆定理得出ABC是直角三角形,进而利用三角形面积得出CD的长,从而判断出海港C是否受台风影响;(2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间【详解】解:(1)如图所示,过点C作CDAB于D点,AC=300km,BC=4

    23、00km,AB=500km,ABC为直角三角形,以台风中心为圆心周围250km以内为受影响区域,海港C会受到台风影响;(2)由(1)得CD=240km,如图所示,当EC=FC=250km时,即台风经过EF段时,正好影响到海港C,此时ECF为等腰三角形,EF=140km,台风的速度为20km/h,14020=7h,台风影响该海港持续的时间有7h【考点】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答5、(1)证明见解析;(2)【解析】【分析】(1)先证明再结合证明 从而可得结论;(2)先证明 再证明 从而利用等面积法可得的长度.【详解】解:(1) , 而 (2) , 【考点】本题考查的是三角形的外角的性质,平行线的性质与判定,勾股定理的逆定理的应用,证明是解本题的关键.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:北师大版八年级数学上册第一章勾股定理定向训练试题(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-938034.html
    相关资源 更多
  • 小学二年级数学《角的初步认识》同步练习题标准卷.docx小学二年级数学《角的初步认识》同步练习题标准卷.docx
  • 2017-2018学年高中历史岳麓版必修一习题:第七单元第27课跨世纪的世界格局 WORD版含答案.PPT2017-2018学年高中历史岳麓版必修一习题:第七单元第27课跨世纪的世界格局 WORD版含答案.PPT
  • 2017-2018学年高中历史岳麓版必修3课件:第四单元 第19课 电影与电视 .ppt2017-2018学年高中历史岳麓版必修3课件:第四单元 第19课 电影与电视 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有解析答案.docx小学二年级数学《角的初步认识》同步练习题有解析答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第四单元 第17课 诗歌、小说与戏剧 .ppt2017-2018学年高中历史岳麓版必修3课件:第四单元 第17课 诗歌、小说与戏剧 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有精品答案.docx小学二年级数学《角的初步认识》同步练习题有精品答案.docx
  • 小学二年级数学《角的初步认识》同步练习题有答案解析.docx小学二年级数学《角的初步认识》同步练习题有答案解析.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第六单元 第26课 改变世界的高新科技 .ppt2017-2018学年高中历史岳麓版必修3课件:第六单元 第26课 改变世界的高新科技 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有答案.docx小学二年级数学《角的初步认识》同步练习题有答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第六单元 第25课 现代科学革命 .ppt2017-2018学年高中历史岳麓版必修3课件:第六单元 第25课 现代科学革命 .ppt
  • 2017-2018学年高中历史岳麓版必修3课件:第五单元 第21课新文化运动 .ppt2017-2018学年高中历史岳麓版必修3课件:第五单元 第21课新文化运动 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有完整答案.docx小学二年级数学《角的初步认识》同步练习题有完整答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第五单元 单元小结与测评 .ppt2017-2018学年高中历史岳麓版必修3课件:第五单元 单元小结与测评 .ppt
  • 小学二年级数学《角的初步认识》同步练习题最新.docx小学二年级数学《角的初步认识》同步练习题最新.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第二单元 第9课 诗歌与小说 .ppt2017-2018学年高中历史岳麓版必修3课件:第二单元 第9课 诗歌与小说 .ppt
  • 小学二年级数学《角的初步认识》同步练习题新版.docx小学二年级数学《角的初步认识》同步练习题新版.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第三单元 第15课近代科学技术革命 .ppt2017-2018学年高中历史岳麓版必修3课件:第三单元 第15课近代科学技术革命 .ppt
  • 小学二年级数学《角的初步认识》同步练习题推荐.docx小学二年级数学《角的初步认识》同步练习题推荐.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第一单元 第6课中国古代的科学技术 .ppt2017-2018学年高中历史岳麓版必修3课件:第一单元 第6课中国古代的科学技术 .ppt
  • 小学二年级数学《角的初步认识》同步练习题必考题.docx小学二年级数学《角的初步认识》同步练习题必考题.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第一单元 第3课汉代的思想大一统 .ppt2017-2018学年高中历史岳麓版必修3课件:第一单元 第3课汉代的思想大一统 .ppt
  • 小学二年级数学《角的初步认识》同步练习题往年题考.docx小学二年级数学《角的初步认识》同步练习题往年题考.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第6课 中国古代的科学技术 .ppt2017-2018学年高中历史岳麓版必修3课件:第6课 中国古代的科学技术 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带解析答案.docx小学二年级数学《角的初步认识》同步练习题带解析答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第3课 汉代的思想大一统 .ppt2017-2018学年高中历史岳麓版必修3课件:第3课 汉代的思想大一统 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带精品答案.docx小学二年级数学《角的初步认识》同步练习题带精品答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第2课 战国时期的百家争鸣 .ppt2017-2018学年高中历史岳麓版必修3课件:第2课 战国时期的百家争鸣 .ppt
  • 2017-2018学年高中历史岳麓版必修3课件:第29课 百花齐放 百家争鸣 .ppt2017-2018学年高中历史岳麓版必修3课件:第29课 百花齐放 百家争鸣 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带答案(黄金题型).docx小学二年级数学《角的初步认识》同步练习题带答案(黄金题型).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1