分享
分享赚钱 收藏 举报 版权申诉 / 27

类型基础强化人教版九年级数学上册第二十二章二次函数定向测试试题(详解版).docx

  • 上传人:a****
  • 文档编号:958332
  • 上传时间:2025-12-19
  • 格式:DOCX
  • 页数:27
  • 大小:567.01KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    基础 强化 人教版 九年级 数学 上册 第二十二 二次 函数 定向 测试 试题 详解
    资源描述:

    1、人教版九年级数学上册第二十二章二次函数定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满足函数表达式ht224t1,则下列说法中正确的

    2、是()A点火后1s和点火后3s的升空高度相同B点火后24s火箭落于地面C火箭升空的最大高度为145mD点火后10s的升空高度为139m2、若二次函数y=ax2+bx+c的x与y的部分对应值如下表:则下列说法错误的是()x-10123yA二次函数图像与x轴交点有两个Bx2时y随x的增大而增大C二次函数图像与x轴交点横坐标一个在10之间,另一个在23之间D对称轴为直线x=1.53、二次函数的图象的对称轴是()ABCD4、二次函数y=x2+px+q,当0x1时,此函数最大值与最小值的差()A与p、q的值都有关B与p无关,但与q有关C与p、q的值都无关D与p有关,但与q无关5、在平面直角坐标系中,对于

    3、点,若,则称点P为“同号点”,下列函数的图象上不存在“同号点”的是()ABCD6、当函数 是二次函数时,的取值为()ABCD7、二次函数的图象如图所示,则下列结论中不正确的是( )AB函数的最大值为C当时,D8、已知函数ykx27x7的图象和x轴有交点,则k的取值范围是()ABC且k0D且k09、当0x3,函数yx2+4x+5的最大值与最小值分别是()A9,5B8,5C9,8D8,410、若函数y(a1)x2+2x+a21是二次函数,则()Aa1Ba1Ca1Da1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么

    4、每天可销售20件经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为_元时,才能使每天所获销售利润最大2、在直角坐标系中,已知直线经过点和点,抛物线y=ax2-x+2(a0)与线段MN有两个不同的交点,则a的取值范围是_3、若函数图像与x轴的两个交点坐标为和,则_4、如图是二次函数 和一次函数y2kx+t的图象,当y1y2时,x的取值范围是_5、若二次函数图象的顶点在x轴上方,则实数m的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、已知抛物线经过点(1,2),(2,13)(1)求a,b的值;(2)若(5,),(m,)是抛物线上不同的两点,且,求m

    5、的值2、如图,已知二次函数的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M(1)求该二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为点Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点P,使PMC为等腰三角形?如果存在,求出点P的坐标;如果不存在,请说明理由3、在平面直角坐标系中,已知点,直线经过点抛物线恰好经过三点中的两点判断点是否在直线上并说明理由;求的值;平移抛物线,使其顶点仍在直线上,求平移后所得抛物线与轴交点纵坐标的最大值4、已知二次函数(1

    6、)当该二次函数的图象经过点时,求该二次函数的表达式;(2)在(1) 的条件下,二次函数图象与x轴的另一个交点为点B,与y轴的交点为点C,点P从点A出发在线段AB上以每秒2个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动,直到其中一点到达终点时,两点停止运动,求BPQ面积的最大值;(3)若对满足的任意实数x,都使得成立,求实数b的取值范围5、已知抛物线c:y=x22x3和直线l:y=xd。将抛物线c在x轴上方的部分沿x轴翻折180,其余部分保持不变,翻折后的图象与x轴下方的部分组成一个“M”型的新图象(即新函数m:y=|x22x3|的图象)。(1)当

    7、直线l与这个新图象有且只有一个公共点时,d= ;(2)当直线l与这个新图象有且只有三个公共点时,求d的值;(3)当直线l与这个新图象有且只有两个公共点时,求d的取值范围;(4)当直线l与这个新图象有四个公共点时,直接写出d的取值范围-参考答案-一、单选题1、C【解析】【分析】分别求出t=1、3、24、10时h的值可判断A、B、D三个选项,将解析式配方成顶点式可判断C选项【详解】解:A、当t=1时,h=24;当t=3时,h=64;所以点火后1s和点火后3s的升空高度不相同,此选项错误;B、当t=24时,h=10,所以点火后24s火箭离地面的高度为1m,此选项错误;C、由ht224t1=(t-12

    8、)2+145知火箭升空的最大高度为145m,此选项正确;D、当t=10时,h=141m,此选项错误;故选:C【考点】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质2、D【解析】【分析】根据x=1时的函数值最小判断出抛物线的开口方向; 根据函数的对称性可知当x=2时的函数值与x=0时的函数值相同, 并求出对称轴直线方程可得答案.【详解】A、由图表数据可知x=1时, y的值最小, 所以抛物线开口向上. 所以该抛物线与x轴有两个交点.故本选项正确;B、根据图表知, 当x2时y随x的增大而增大.故本选项正确;C、抛物线的开口方向向上, 抛物线与y轴的交点坐标是(0,),对称轴是x=1,

    9、所以二次函数图象与x轴交点横坐标一个在-10之间, 另一个在23之间. 故本选项正确;D、因为x=0和x=2 时的函数值相等,则抛物线的对称轴为直线x=1. 故本选项错误;故选:D.【考点】本题主要考查二次函数性质与二次函数的最值.3、A【解析】【分析】将二次函数写成顶点式,进而可得对称轴【详解】解:二次函数的图象的对称轴是故选A【考点】本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键4、D【解析】【分析】分别求出函数解析式的最小值、当0x1时端点值即:当x=0和x=1时的函数值由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关【详解】解:依题

    10、意得:当时,端点值,当时,端点值,当时,函数最小值,由二次函数的最值性质可知,当0x1时,此函数最大值和最小值是、其中的两个,所以最大值与最小值的差可能是或 或,故其差只含p不含q,故与p有关,但与q无关故选:【考点】本题考查了二次函数的最值问题,掌握二次函数的性质、灵活运用配方法是解题的关键5、C【解析】【分析】由题意,图象经过第一和第三象限的函数都是满足条件的,由此判断即可【详解】解:由题意,图象经过第一和第三象限的函数都是满足条件的,函数的图象在二、四象限,不满足条件,故选:C【考点】本题考查了反比函数的性质,一次函数的性质,二次函数的性质可以用特值法进行快速的排除6、D【解析】【分析】

    11、根据二次函数的定义去列式求解计算即可【详解】函数 是二次函数,a-10,=2,a1,故选D【考点】本题考查了二次函数的定义,熟记二次函数的定义并灵活列式计算是解题的关键7、D【解析】【分析】根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,利用抛物线的对称性可得到抛物线与x轴的另一个交点坐标为(-3,0),从而分别判断各选项【详解】解:抛物线开口向下,a0,抛物线的对称轴为直线x=-1,即b=2a,则b0,抛物线与y轴交于正半轴,c0,则abc0,故A正确;当x=-1时,y取最大值为,故B正确;由于开口向下,对称轴为直线x=-1,则点(1,0)关于直线x=-

    12、1对称的点为(-3,0),即抛物线与x轴交于(1,0),(-3,0),当时,故C正确;由图像可知:当x=-2时,y0,即,故D错误;故选D【考点】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)8、B【解析】【分析】对分情况进行讨论,时,为一次函数,符合题意;时,二次函数,求解即可【详解】解:当时,

    13、函数为,为一次函数,与x轴有交点,符合题意;当,函数为,为二次函数,因为图像与x轴有交点所以,解得且综上,故选B【考点】此题考查了二次函数与x轴有交点的条件,解题的关键是对分情况进行讨论,易错点是容易忽略的情况9、A【解析】【分析】利用配方法把原方程化为顶点式,再根据二次函数的性质即可解答【详解】yx2+4x+5x2+4x4+4+5(x2)2+9,当x2时,最大值是9,0x3,x0时,最小值是5,故选:A【考点】本题考查二次函数的最值,掌握二次函数的性质与利用配方法将一般式改为顶点式是解答本题的关键10、A【解析】【分析】利用二次函数定义进行解答即可【详解】解:由题意得:a10,解得:a1,故

    14、选:A【考点】本题主要考查了二次函数的定义,准确计算是解题的关键二、填空题1、11【解析】【分析】根据题意列出二次函数关系式,根据二次函数的性质即可得到结论【详解】解:设销售单价定为元,每天所获利润为元,则,所以将销售定价定为11元时,才能使每天所获销售利润最大,故答案为11【考点】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答2、或【解析】【分析】由题意可求点,点,分,两种情况讨论,根据题意列出不等式组,可求a的取值范围【详解】直线经过点和点,抛物线与线段MN有两个不同的交点,当时,解得:,当时,解得:,综上所述:或.故答案为或.【考点】本题考

    15、查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键3、-2【解析】【分析】根据二次函数图象对称轴所在的直线与x轴的交点的坐标,即为它的图象与x轴两交点之间线段中点的横坐标,即可求得【详解】解:函数图像与x轴的两个交点坐标为和由对称轴所在的直线为: 解得 故答案为:-2【考点】本题考查了二次函数的性质及中点坐标的求法,熟练掌握和运用二次函数的性质及中点坐标的求法是解决本题的关键4、1x2【解析】【分析】根据图象可以直接回答,使得y1y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对

    16、应的自变量x的取值范围【详解】根据图象可得出:当y1y2时,x的取值范围是:1x2故答案为:1x2【考点】本题考查了二次函数的性质本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度5、【解析】【分析】先求出顶点坐标,再令顶点的纵坐标大于0即可求解【详解】解:二次函数的对称轴为,当时,顶点坐标为,顶点在x轴上方,即,故答案为:【考点】本题考查二次函数的顶点坐标,掌握求二次函数顶点坐标的方法是解题的关键三、解答题1、(1);(2)【解析】【分析】(1)将点的坐标分别代入解析式即可求得a,b的值;(2)将(5,),(m,)代入解析式,联立即可求得m的值.【详解】(1)抛物线经过

    17、点(1,-2),(-2,13),解得,a的值为1,b的值为-4;(2)(5,),(m,)是抛物线上不同的两点,解得或(舍去)m的值为-1.【考点】本题主要考查二次函数性质,用待定系数法求二次函数,正确解出方程组求得未知数是解题的关键.2、(1);(2)S四边形ACPQ;(3)存在,【解析】【分析】(1)根据题意得出点B和点C的坐标,将两点坐标代入即可得出函数解析式;(2)根据(1)中函数解析式得出点M的坐标,利用待定系数法求BM解析式,根据OQm设出点P的坐标,从而得出PQ的长度,再根据得出S关于m的函数解析式;再根据点P在线段MB上得出m的取值范围;(3)讨论当时,当时,和当时实际情况,分别

    18、根据勾股定理列出方程,得出点P的坐标【详解】解:(1),代入中,得,解得,该二次函数的解析式为;(2),解得.设直线的解析式为,则有解得直线的解析式为.轴,点的坐标为,;(3)线段上存在点,使为等腰三角形.理由如下:设点的坐标为,由题意可得,当时,整理得,解得,(舍去),经检验是方程的根当,此时;当时,整理得,=40,解得,(舍去),经检验是方程的根此时;当时,整理得,解得,经检验是方程的根此时;综上所述,线段上存在点,使为等腰三角形【考点】本题考查二次函数与几何综合题型,利用待定系数法求函数解析式;求坐标系中四边形的面积,需分割三角形与梯形来解,注意动点所在的位置决定了自变量的取值范围;等腰

    19、三角形分类考虑,可以用勾股定理,构造方程是解题关键3、(1)点在直线上,理由见详解;(2)a=-1,b=2;(3)【解析】【分析】(1)先将A代入,求出直线解析式,然后将将B代入看式子能否成立即可;(2)先跟抛物线与直线AB都经过(0,1)点,且B,C两点的横坐标相同,判断出抛物线只能经过A,C两点,然后将A,C两点坐标代入得出关于a,b的二元一次方程组;(3)设平移后所得抛物线的对应表达式为y=-(x-h)2+k,根据顶点在直线上,得出k=h+1,令x=0,得到平移后抛物线与y轴交点的纵坐标为-h2+h+1,在将式子配方即可求出最大值【详解】(1)点在直线上,理由如下:将A(1,2)代入得,

    20、解得m=1,直线解析式为,将B(2,3)代入,式子成立,点在直线上;(2)抛物线与直线AB都经过(0,1)点,且B,C两点的横坐标相同,抛物线只能经过A,C两点,将A,C两点坐标代入得,解得:a=-1,b=2;(3)设平移后所得抛物线的对应表达式为y=-(x-h)2+k,顶点在直线上,k=h+1,令x=0,得到平移后抛物线与y轴交点的纵坐标为-h2+h+1,-h2+h+1=-(h-)2+,当h=时,此抛物线与轴交点的纵坐标取得最大值【考点】本题考查了求一次函数解析式,用待定系数法求二次函数解析式,二次函数的平移和求最值,求出两个函数的表达式是解题关键4、(1);(2);(3)-3b1【解析】【

    21、分析】(1)根据待定系数法,即可求解;(2)先求出A(1,0),B(-3,0),C(0,-3),设运动时间为t,则AP=2t,BQ=t,BP=4-2t,过点M作MQx轴,可得MQ=t,从而得到BPQ的面积的表达式,进而即可求解;(3)设,结合函数图像的对称轴,开口方向,分两种情况:或,进而即可求解【详解】解:(1)把代入,得:,解得:b=1,该二次函数的表达式为:;(2)令y=0代入,得:,解得:或,令x=0代入得:y=-3,A(1,0),B(-3,0),C(0,-3),设运动时间为t,则AP=2t,BQ=t,BP=4-2t,过点M作MQx轴,OB=OC=3,OBC=45,是等腰直角三角形,M

    22、Q=BQ=t,BPQ的面积=,当t=1时,BPQ面积的最大值=;(3)抛物线的对称轴为:直线x=-b,开口向上,设,对的任意实数x,都使得成立,或,-1b1或-3b-1,-3b1【考点】本题主要考查二次函数综合,掌握待定系数法,二次函数的性质以及根据图像对称轴位置,列出不等式组,是解题的关键5、 (1)d=;(2)d=或d=(3)d或d; (4)d。【解析】【分析】(1)令x22x3=xd求解即可;(2)设抛物线c:y=x22x3与x轴交于点A(3,0),点B(1,0),则根据方程有两个相等的实根求出P的坐标,然后求解即可;(3)(4)根据(2)求出的P点坐标进行数形结合画图找出d的取值范围即

    23、可.【详解】解:(1)当直线l经过点A(3,0)时,d=;(2)设抛物线c:y=x22x3与x轴交于点A(3,0),点B(1,0), 直线l:y=xd与抛物线c:y=x22x3(3x1)相切于点P,则点P的横坐标恰好是方程xd=x22x3,即2x23x2d6=0(3x1)的两个相等实数根,解=98(2d6)=0得d=,点P的坐标为().当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=; 当直线l经过点P()时,直线l与这个新图象有且只有三个公共点,解得d=; 综合、得:d=或d=(3)由平移直线l可得:直线l从经过点A(3,0)开始向下平移到直线l经过点P()的过程中,直线l与这个新图象有且只有两个公共点,可得d 直线l从经过点P()继续向下平移的过程中,直线l与这个新图象有且只有两个公共点,可得d;综合、得:d或d; (4)如图:当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=;当直线l继续向下平移的过程中经过点P(),直线l与这个新图象有且只有三个公共点,可得d=;要使直线l与这个新图象有四个公共点则d的取值范围是d.【考点】本题考查的是二次函数综合运用,关键是通过数形变换,确定变换后图形与直线的位置关系

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:基础强化人教版九年级数学上册第二十二章二次函数定向测试试题(详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-958332.html
    相关资源 更多
  • 小学二年级数学《角的初步认识》同步练习题标准卷.docx小学二年级数学《角的初步认识》同步练习题标准卷.docx
  • 2017-2018学年高中历史岳麓版必修一习题:第七单元第27课跨世纪的世界格局 WORD版含答案.PPT2017-2018学年高中历史岳麓版必修一习题:第七单元第27课跨世纪的世界格局 WORD版含答案.PPT
  • 2017-2018学年高中历史岳麓版必修3课件:第四单元 第19课 电影与电视 .ppt2017-2018学年高中历史岳麓版必修3课件:第四单元 第19课 电影与电视 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有解析答案.docx小学二年级数学《角的初步认识》同步练习题有解析答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第四单元 第17课 诗歌、小说与戏剧 .ppt2017-2018学年高中历史岳麓版必修3课件:第四单元 第17课 诗歌、小说与戏剧 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有精品答案.docx小学二年级数学《角的初步认识》同步练习题有精品答案.docx
  • 小学二年级数学《角的初步认识》同步练习题有答案解析.docx小学二年级数学《角的初步认识》同步练习题有答案解析.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第六单元 第26课 改变世界的高新科技 .ppt2017-2018学年高中历史岳麓版必修3课件:第六单元 第26课 改变世界的高新科技 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有答案.docx小学二年级数学《角的初步认识》同步练习题有答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第六单元 第25课 现代科学革命 .ppt2017-2018学年高中历史岳麓版必修3课件:第六单元 第25课 现代科学革命 .ppt
  • 2017-2018学年高中历史岳麓版必修3课件:第五单元 第21课新文化运动 .ppt2017-2018学年高中历史岳麓版必修3课件:第五单元 第21课新文化运动 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有完整答案.docx小学二年级数学《角的初步认识》同步练习题有完整答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第五单元 单元小结与测评 .ppt2017-2018学年高中历史岳麓版必修3课件:第五单元 单元小结与测评 .ppt
  • 小学二年级数学《角的初步认识》同步练习题最新.docx小学二年级数学《角的初步认识》同步练习题最新.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第二单元 第9课 诗歌与小说 .ppt2017-2018学年高中历史岳麓版必修3课件:第二单元 第9课 诗歌与小说 .ppt
  • 小学二年级数学《角的初步认识》同步练习题新版.docx小学二年级数学《角的初步认识》同步练习题新版.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第三单元 第15课近代科学技术革命 .ppt2017-2018学年高中历史岳麓版必修3课件:第三单元 第15课近代科学技术革命 .ppt
  • 小学二年级数学《角的初步认识》同步练习题推荐.docx小学二年级数学《角的初步认识》同步练习题推荐.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第一单元 第6课中国古代的科学技术 .ppt2017-2018学年高中历史岳麓版必修3课件:第一单元 第6课中国古代的科学技术 .ppt
  • 小学二年级数学《角的初步认识》同步练习题必考题.docx小学二年级数学《角的初步认识》同步练习题必考题.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第一单元 第3课汉代的思想大一统 .ppt2017-2018学年高中历史岳麓版必修3课件:第一单元 第3课汉代的思想大一统 .ppt
  • 小学二年级数学《角的初步认识》同步练习题往年题考.docx小学二年级数学《角的初步认识》同步练习题往年题考.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第6课 中国古代的科学技术 .ppt2017-2018学年高中历史岳麓版必修3课件:第6课 中国古代的科学技术 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带解析答案.docx小学二年级数学《角的初步认识》同步练习题带解析答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第3课 汉代的思想大一统 .ppt2017-2018学年高中历史岳麓版必修3课件:第3课 汉代的思想大一统 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带精品答案.docx小学二年级数学《角的初步认识》同步练习题带精品答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第2课 战国时期的百家争鸣 .ppt2017-2018学年高中历史岳麓版必修3课件:第2课 战国时期的百家争鸣 .ppt
  • 2017-2018学年高中历史岳麓版必修3课件:第29课 百花齐放 百家争鸣 .ppt2017-2018学年高中历史岳麓版必修3课件:第29课 百花齐放 百家争鸣 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带答案(黄金题型).docx小学二年级数学《角的初步认识》同步练习题带答案(黄金题型).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1