分享
分享赚钱 收藏 举报 版权申诉 / 29

类型基础强化人教版九年级数学上册第二十四章圆定向测试试卷(含答案详解).docx

  • 上传人:a****
  • 文档编号:958460
  • 上传时间:2025-12-19
  • 格式:DOCX
  • 页数:29
  • 大小:773.08KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    基础 强化 人教版 九年级 数学 上册 第二 十四 定向 测试 试卷 答案 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,一个半径为r(r1)的图形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部

    2、分面积是()ABCD2、如图,矩形中,分别是,边上的动点,以为直径的与交于点,则的最大值为()A48B45C42D403、如图,已知中,如果以点为圆心的圆与斜边有公共点,那么的半径的取值范围是()ABCD4、往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为()ABCD5、如图,正方形的边长为4,以点为圆心,为半径画圆弧得到扇形(阴影部分,点在对角线上)若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()AB1CD6、已知圆的半径为扇形的圆心角为,则扇形的面积为()ABCD7、如图,AB为的直径,C,D为上的两点,若,则的度数为()ABCD8、如图,是的直

    3、径,若,则的度数是()A32B60C68D649、如图物体由两个圆锥组成,其主视图中,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A2BCD10、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内O上的一点,若DAB25,则OCD()A50B40C70D30第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,四边形ABCD为O的内接正四边形,AEF为O的内接正三角形,连接DF若DF恰好是同圆的一个内接正多边形的一边,则这个正多边形的边数为 _2、下列说法直径是弦;圆心相同,半径相同的两个圆是同心圆;两个半圆是等弧;经过圆内一定点可以作无数条

    4、直径正确的是_填序号3、如图,是的内接正三角形,点是圆心,点,分别在边,上,若,则的度数是_度4、如图,在平面直角坐标系中,点A(0,1)、B(0,1),以点A为圆心,AB为半径作圆,交x轴于点C、D,则CD的长是_5、如图,ABC内接于O,CAB=30,CBA=45,CDAB于点D,若O的半径为2,则CD的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,的中点(1)求证:三点在以为圆心的圆上;(2)若,求证:四点在以为圆心的圆上2、如图,在中,(1)请作出经过A、B两点的圆,且该圆的圆心O落在线段AC上(尺规作图,保留作图痕迹,不写做法);(2)在(1)的条件下,已知,将

    5、线段AB绕点A逆时针旋转后与O交于点E试证明:B、C、E三点共线3、在中,D为的中点,E,F分别为,上任意一点,连接,将线段绕点E顺时针旋转90得到线段,连接,(1)如图1,点E与点C重合,且的延长线过点B,若点P为的中点,连接,求的长;(2)如图2,的延长线交于点M,点N在上,且,求证:;(3)如图3,F为线段上一动点,E为的中点,连接,H为直线上一动点,连接,将沿翻折至所在平面内,得到,连接,直接写出线段的长度的最小值4、如图,已知在O中,直径MN10,正方形ABCD的四个顶点分别在O及半径OM、OP上,并且POM45,求正方形的边长5、已知:如图,在O中,AB为弦,C、D两点在AB上,且

    6、ACBD求证:-参考答案-一、单选题1、C【解析】【分析】当运动到正六边形的角上时,圆与两边的切点分别为,连接,根据正六边形的性质可知,故,再由锐角三角函数的定义用表示出的长,可知圆形纸片不能接触到的部分的面积,由此可得出结论【详解】解:如图所示,连接,此多边形是正六边形,圆形纸片不能接触到的部分的面积故选:C【考点】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键2、A【解析】【分析】过A点作AHBD于H,连接OM,如图,先利用勾股定理计算出BD=75,则利用面积法可计算出AH=36,再证明点O在AH上时,OH最短,此时HM有最大值,最大值为24,然后根据垂径定理可判断MN的最大

    7、值【详解】解:过A点作AHBD于H,连接OM,如图,在RtABD中,BD=,AHBD=ADAB,AH=36,O的半径为26,点O在AH上时,OH最短,HM=,此时HM有最大值,最大值为:24,OHMN,MN=2MH,MN的最大值为224=48故选:A【考点】本题考查了垂径定理:直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了矩形的性质和勾股定理3、C【解析】【分析】作CDAB于D,根据勾股定理计算出AB=13,再利用面积法计算出然后根据直线与圆的位置关系得到当时,以C为圆心、r为半径作的圆与斜边AB有公共点【详解】解:作CDAB于D,如图,C=90,AC=3,BC=4,以C为圆心、r为半

    8、径作的圆与斜边AB有公共点时,r的取值范围为故选:C【考点】本题考查了直线与圆的位置关系:设O的半径为r,圆心O到直线l的距离为d:直线l和O相交dr;直线l和O相切d=r;直线l和O相离dr4、C【解析】【分析】过点O作ODAB于D,交O于E,连接OA,根据垂径定理即可求得AD的长,又由O的直径为,求得OA的长,然后根据勾股定理,即可求得OD的长,进而求得油的最大深度的长【详解】解:过点O作ODAB于D,交O于E,连接OA,由垂径定理得:,O的直径为,在中,由勾股定理得:,油的最大深度为,故选:【考点】本题主要考查了垂径定理的知识此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利

    9、用勾股定理解决5、D【解析】【分析】根据题意,扇形ADE中弧DE的长即为圆锥底面圆的周长,即通过计算弧DE的长,再结合圆的周长公式进行计算即可得解【详解】正方形的边长为4是正方形的对角线圆锥底面周长为,解得该圆锥的底面圆的半径是,故选:D【考点】本题主要考查了扇形的弧长公式,圆的周长公式,正方形的性质以及圆锥的相关知识点,熟练掌握弧长公式及圆的周长公式是解决本题的关键6、B【解析】【分析】扇形面积公式为: 利用公式直接计算即可得到答案【详解】解: 圆的半径为扇形的圆心角为, 故选:【考点】本题考查的是扇形的面积的计算,掌握扇形的面积的计算公式是解题的关键7、B【解析】【分析】连接AD,如图,根

    10、据圆周角定理得到,然后利用互余计算出,从而得到的度数【详解】解:连接AD,如图,AB为的直径,故选B【考点】本题主要考查了同弦所对的圆周角相等,直径所对的圆周角是直角,解题的关键在于能够熟练掌握相关知识进行求解.8、D【解析】【分析】根据已知条件和圆心角、弧、弦的关系,可知,然后根据对顶角相等即可求解【详解】,故选:D【考点】本题主要考查圆心角、弧、弦的关系、对顶角相等,较简单,掌握基本概念是解题关键9、D【解析】【分析】先证明ABD为等腰直角三角形得到ABD45,BDAB,再证明CBD为等边三角形得到BCBDAB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:

    11、CB,从而得到下面圆锥的侧面积【详解】A90,ABAD,ABD为等腰直角三角形,ABD45,BDAB,ABC105,CBD60,而CBCD,CBD为等边三角形,BCBDAB,上面圆锥与下面圆锥的底面相同,上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,下面圆锥的侧面积1故选D【考点】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长也考查了等腰直角三角形和等边三角形的性质10、C【解析】【分析】根据圆周角定理求出DOB,根据等腰三角形性质求出OCD=ODC,根据三角形内角和定理求出即可【详解】解:连接OD,DAB=25,BOD=2

    12、DAB=50,COD=90-50=40,OC=OD,OCD=ODC=(180-COD)=70,故选:C【考点】本题考查了圆周角定理,等腰三角形性质,三角形内角和定理的应用,主要考查学生的推理能力,题目比较典型,难度适中二、填空题1、12【解析】【分析】连接OA、OD、OF,如图,利用正多边形与圆,分别计算O的内接正四边形与内接正三角形的中心角得到AOD=90,AOF=120,则DOF=30,然后计算即可得到n的值【详解】解:连接OA、OD、OF,如图,设这个正多边形为n边形,AD,AF分别为O的内接正四边形与内接正三角形的一边,AOD=90,AOF=120,DOF=AOF-AOD=30,n=1

    13、2,即DF恰好是同圆内接一个正十二边形的一边故答案为:12【考点】本题考查了正多边形与圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆;熟练掌握正多边形的有关概念2、【解析】【分析】利用圆的有关定义及性质分别判断后即可确定正确的选项.【详解】解:直径是弦,但弦不是直径,故 正确;圆心相同但半径不同的两个圆是同心圆,故 错误;若两个半圆的半径不等,则这两个半圆的弧长不相等,故错误;经过圆的圆心可以作无数条的直径,故错误.综上,正确的只有.故答案为:【考点】本题考查了圆的知识,了解有关圆的定义及性质是解答本题的关键,难度

    14、不大.3、120【解析】【分析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题【详解】连接OA,OB,作OHAC,OMAB,如下图所示:因为等边三角形ABC,OHAC,OMAB,由垂径定理得:AH=AM,又因为OA=OA,故OAHOAM(HL)OAH=OAM又OA=OB,AD=EB,OAB=OBA=OAD,ODAOEB(SAS),DOA=EOB,DOE=DOA+AOE=AOE+EOB=AOB又C=60以及同弧,AOB=DOE=120故本题答案为:120【考点】本题考查圆与等边三角形的综合,本题目需要根据

    15、等角的互换将所求问题进行转化,构造辅助线是本题难点,全等以及垂径定理的应用在圆综合题目极为常见,圆心角、弧、圆周角的关系需熟练掌握4、【解析】【分析】根据题意在中求出,利用垂径定理得出结果【详解】由题意,在中,由垂径定理知,故答案为:【考点】本题考查了勾股定理及垂径定理,熟练掌握垂径定理是解决本题的关键5、【解析】【分析】连接OA,OC,根据COA=2CBA=90可求出AC=,然后在RtACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,COA=2CBA=90,在RtAOC中,AC=,CDAB,在RtACD中,CD=ACsinCAD=,故答案为.【考点】本题考查了圆周角定理以及锐

    16、角三角函数,根据题意作出常用辅助线是解题关键.三、解答题1、(1)见解析;(2)见解析【解析】【分析】(1)连结OC,利用直角三角形斜边中线等于斜边一半可得OA=OB=OC,所以A,B,C三点在以O为圆心,OA长为半径的圆上;(2)连结OD,可得OA=OB=OC=OD,所以A,B,C,D四点在以O为圆心,OA长为半径的圆上.【详解】解:(1)连结OC,在中,的中点,OC=OA=OB,三点在以为圆心的圆上;(2)连结OD,OA=OB=OC=OD,四点在以为圆心的圆上.【考点】此题考查了圆的定义:到定点的距离等于定长的点都在同一个圆上,直角三角形斜边中线的性质证明几个点共圆,只需要证明这几个点到某

    17、个定点的距离相等即可.2、 (1)见解析(2)见解析【解析】【分析】(1)只需要作AB的垂直平分线,其与AC的交点即为圆心O,由此作图即可;(2)先由圆周角定理求出,再由旋转的性质求出,从而得到,证明OBCOEC得到OCE=OCB=90,则OCB+OCE=180,即可证明B、C、E三点共线(1)解:如图所示,圆O即为所求;(2)解:如图所示,连接CE,OE,由旋转的性质可知,在OBC和OEC中,OBCOEC(SAS),OCE=OCB=90,OCB+OCE=180,B、C、E三点共线【考点】本题主要考查了线段垂直平分线的尺规作图,画圆,圆周角定理,旋转的性质,全等三角形的性质与判定等等,熟知性格

    18、知识是解题的关键3、 (1)2(2)见解析(3)【解析】【分析】(1)根据已知条件可得为的中点,证明,进而根据直角三角形斜边上的中线等于斜边的一半即可求解;(2)过点作交的延长线于点,证明,可得,进而根据,即可得出结论,(3)根据(2)可知,当点在线段上运动时,点在平行于的线段上运动,根据题意作出图形,根据点到圆上的距离求最值即可求解(1)如图,连接将线段绕点E顺时针旋转90得到线段,是等腰直角三角形, P为FG的中点,D为的中点,在中,;(2)如图,过点作交的延长线于点, ,是等腰直角三角形,在与中,又,又,,,;(3)由(2)可知, 则当点在线段上运动时,点在平行于的线段上运动,将沿翻折至

    19、所在平面内,得到, E为的中点, ,则点在以为圆心为半径的圆上运动,当三点共线时,最小,如图,当运动到与点重合时,取得最小值,如图,当点运动到与点重合时,取得最小值,此时,则综上所述,的最小值为【考点】本题考查了等腰三角形的性质与判定,直角三角形斜边上的中线,勾股定理,全等三角形的性质与判定,轴对称线的性质,点到圆上一点距离最值问题,正确的添加辅助线是解题的关键4、【解析】【分析】证出DCO是等腰直角三角形,得出DCCO,求出BO2AB,连接AO,半径AO5,再根据勾股定理列方程,即可求出AB的长【详解】解:四边形ABCD是正方形,ABCBCD90,ABBCCD,DCO90,又POM45,CDO45,CDCO,BOBC+COBC+CD,BO2AB,连接AO,如图:MN10,AO5,又在RtABO中,AB2+BO2AO2,AB2+(2AB)252,解得:AB,则正方形ABCD的边长为【考点】此题考查了正方形的性质和等腰直角三角形的性质,解题的关键是证出DCO是等腰直角三角形,得出BO2AB,作出辅助线,利用勾股定理列出关于AB的方程5、证明见解析【解析】【分析】根据等边对等角可以证得A=B,然后根据SAS即可证得两个三角形全等【详解】证明:OAOB,AB,在OAC和OBD中:,OACOBD(SAS)【考点】本题考查了三角形全等的判定与性质,同圆半径相等正确理解三角形的判定定理是关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:基础强化人教版九年级数学上册第二十四章圆定向测试试卷(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-958460.html
    相关资源 更多
  • 小学二年级数学《角的初步认识》同步练习题标准卷.docx小学二年级数学《角的初步认识》同步练习题标准卷.docx
  • 2017-2018学年高中历史岳麓版必修一习题:第七单元第27课跨世纪的世界格局 WORD版含答案.PPT2017-2018学年高中历史岳麓版必修一习题:第七单元第27课跨世纪的世界格局 WORD版含答案.PPT
  • 2017-2018学年高中历史岳麓版必修3课件:第四单元 第19课 电影与电视 .ppt2017-2018学年高中历史岳麓版必修3课件:第四单元 第19课 电影与电视 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有解析答案.docx小学二年级数学《角的初步认识》同步练习题有解析答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第四单元 第17课 诗歌、小说与戏剧 .ppt2017-2018学年高中历史岳麓版必修3课件:第四单元 第17课 诗歌、小说与戏剧 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有精品答案.docx小学二年级数学《角的初步认识》同步练习题有精品答案.docx
  • 小学二年级数学《角的初步认识》同步练习题有答案解析.docx小学二年级数学《角的初步认识》同步练习题有答案解析.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第六单元 第26课 改变世界的高新科技 .ppt2017-2018学年高中历史岳麓版必修3课件:第六单元 第26课 改变世界的高新科技 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有答案.docx小学二年级数学《角的初步认识》同步练习题有答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第六单元 第25课 现代科学革命 .ppt2017-2018学年高中历史岳麓版必修3课件:第六单元 第25课 现代科学革命 .ppt
  • 2017-2018学年高中历史岳麓版必修3课件:第五单元 第21课新文化运动 .ppt2017-2018学年高中历史岳麓版必修3课件:第五单元 第21课新文化运动 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有完整答案.docx小学二年级数学《角的初步认识》同步练习题有完整答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第五单元 单元小结与测评 .ppt2017-2018学年高中历史岳麓版必修3课件:第五单元 单元小结与测评 .ppt
  • 小学二年级数学《角的初步认识》同步练习题最新.docx小学二年级数学《角的初步认识》同步练习题最新.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第二单元 第9课 诗歌与小说 .ppt2017-2018学年高中历史岳麓版必修3课件:第二单元 第9课 诗歌与小说 .ppt
  • 小学二年级数学《角的初步认识》同步练习题新版.docx小学二年级数学《角的初步认识》同步练习题新版.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第三单元 第15课近代科学技术革命 .ppt2017-2018学年高中历史岳麓版必修3课件:第三单元 第15课近代科学技术革命 .ppt
  • 小学二年级数学《角的初步认识》同步练习题推荐.docx小学二年级数学《角的初步认识》同步练习题推荐.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第一单元 第6课中国古代的科学技术 .ppt2017-2018学年高中历史岳麓版必修3课件:第一单元 第6课中国古代的科学技术 .ppt
  • 小学二年级数学《角的初步认识》同步练习题必考题.docx小学二年级数学《角的初步认识》同步练习题必考题.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第一单元 第3课汉代的思想大一统 .ppt2017-2018学年高中历史岳麓版必修3课件:第一单元 第3课汉代的思想大一统 .ppt
  • 小学二年级数学《角的初步认识》同步练习题往年题考.docx小学二年级数学《角的初步认识》同步练习题往年题考.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第6课 中国古代的科学技术 .ppt2017-2018学年高中历史岳麓版必修3课件:第6课 中国古代的科学技术 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带解析答案.docx小学二年级数学《角的初步认识》同步练习题带解析答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第3课 汉代的思想大一统 .ppt2017-2018学年高中历史岳麓版必修3课件:第3课 汉代的思想大一统 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带精品答案.docx小学二年级数学《角的初步认识》同步练习题带精品答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第2课 战国时期的百家争鸣 .ppt2017-2018学年高中历史岳麓版必修3课件:第2课 战国时期的百家争鸣 .ppt
  • 2017-2018学年高中历史岳麓版必修3课件:第29课 百花齐放 百家争鸣 .ppt2017-2018学年高中历史岳麓版必修3课件:第29课 百花齐放 百家争鸣 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带答案(黄金题型).docx小学二年级数学《角的初步认识》同步练习题带答案(黄金题型).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1