分享
分享赚钱 收藏 举报 版权申诉 / 6

类型2022高三数学(理科)(全国版)一轮复习试题:第8章第2讲 空间点、线、面的位置关系 1 WORD版含解析.docx

  • 上传人:a****
  • 文档编号:240975
  • 上传时间:2025-11-21
  • 格式:DOCX
  • 页数:6
  • 大小:245.15KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022高三数学理科全国版一轮复习试题:第8章第2讲 空间点、线、面的位置关系 WORD版含解析 2022 数学 理科 全国 一轮 复习 试题 空间 位置 关系 WORD 解析
    资源描述:

    1、第八章立体几何第二讲空间点、直线、平面之间的位置关系练好题考点自测1.下列说法正确的是()A.梯形一定是平面图形B.过三点确定一个平面C.三条直线两两相交确定一个平面D.若两个平面有三个公共点,则这两个平面重合2.广东高考,5分若直线l1和l2是异面直线,l1在平面内,l2在平面内,l是平面与平面的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交3.若AOB=A1O1B1,且OAO1A1,OA与O1A1的方向相同,则下列结论中正确的是()A.OBO1B1且OB与O1B1的方向相同B.OBO1B1C

    2、.OB与O1B1不平行D.OB与O1B1不一定平行4.2017全国卷,6,5分如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A B C D5.2020长春市第四次质量监测已知正方体ABCD-A1B1C1D1的棱长为2,点N是棱CC1的中点,则异面直线AN与BC所成角的余弦值为.6.2016全国卷,14,5分理,是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么.如果m,n,那么mn.如果,m,那么m.如果mn,那么m与所成的角和n与所成的角相等.其中正确的命题有.(填写所有正确命题的编号)拓

    3、展变式1.如图8-2-4所示,E,F分别是正方体ABCD-A1B1C1D1的棱CC1,AA1的中点,试画出平面BED1F与平面ABCD的交线.2.如图8-2-7为正方体表面的一种展开图,则在原正方体的四条线段AB,CD,EF,GH所在直线中,互为异面直线的有对.图8-2-73.2018全国卷,9,5分理在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为()A.15B.56C.55D.224.2021湖南四校联考如图8-2-13所示,在正方体ABCD-A1B1C1D1中,N为底面ABCD的中心,P为线段A1D1上的动点(不包括两个端点),M

    4、为线段AP的中点,则下列结论错误的是()A.CM与PN是异面直线B.CMPNC.平面PAN平面BDD1B1D.过P,A,C三点的正方体的截面一定是等腰梯形图8-2-13答 案第二讲空间点、直线、平面之间的位置关系1.A对于A,因为两条平行直线确定一个平面,所以梯形可以确定一个平面,A正确;对于B,过不在同一条直线上的三点有且只有一个平面,注意三点不共线,B错误;对于C,三条直线两两相交,可以确定一个平面或三个平面,C错误;对于D,若两个平面有三个公共点,则这两个平面相交或重合,D错误.故选A.2.D假设l与l1,l2都不相交,因为l与l1都在平面内,于是ll1,同理ll2,于是l1l2,与已知

    5、矛盾,故l至少与l1,l2中的一条相交.故选D.3.D在空间中,若两角相等,角的一边平行且方向相同,则另一边不一定平行,故选D.4.A解法一对于选项B,如图D 8-2-1所示,C,D为正方体的两个顶点,连接CD,因为ABCD,M,Q分别是所在棱的中点,所以MQCD,所以ABMQ,又AB平面MNQ,MQ平面MNQ,所以AB平面MNQ.同理可证选项C,D中均有AB平面MNQ.选A.图D 8-2-1解法二对于选项A,作出正方体的底面的对角线,记对角线的交点为O(如图D 8-2-2所示),连接OQ,则OQAB,因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行,故选A.5

    6、.23因为ADBC,所以DAN为异面直线AN与BC所成的角,连接AC,在RtNAC中,因为N为CC1的中点,所以CN=1.AN=AC2+CN2=(22)2+12=3,连接DN,在RtADN中,cosDAN=ADAN=23.图D 8-2-26.对于命题,可运用长方体举反例证明其错误.如图D 8-2-3,不妨设AA所在直线为直线m,CD所在直线为直线n,ABCD所在的平面为,ABCD所在的平面为,显然这些直线和平面满足题目条件,但不成立.故错误.对于命题,设过直线n的某平面与平面相交于直线l,则ln,由m知ml,从而mn,故正确.对于命题,由平面与平面平行的性质可知,正确.对于命题,由平行的传递性

    7、及线面角的定义可知,正确.图D 8-2-31.如图D 8-2-4所示,在平面AA1D1D内,D1F与DA不平行.分别延长D1F与DA,则D1F与DA的延长线必相交,设交点为M.因为MD1F,MDA,D1F平面BED1F,DA平面ABCD.所以M平面BED1F平面ABCD,又B平面BED1F平面ABCD,连接MB,则平面BED1F平面ABCD=MB.故直线MB为所求两平面的交线.2.3还原后的正方体的示意图如图D 8-2-5所示,其中AB与CD,AB与GH,EF与GH分别互为异面直线,共3对.图 D 8-2-53.C解法一如图D 8-2-6,补上一个相同的长方体CDEF-C1D1E1F1,连接D

    8、E1,B1E1.易知AD1DE1,则B1DE1为异面直线AD1与DB1所成角或其补角.因为在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,所以DE1=DE2+EE12=12+(3)2=2,DB1=12+12+(3)2=5,B1E1=A1B12+A1E12=12+22=5,在B1DE1中,由余弦定理,得cosB1DE1=22+(5)2-(5)2225=55,即异面直线AD1与DB1所成角的余弦值为55,故选C.图 D 8-2-6解法二如图D 8-2-7,连接BD1,交DB1于点O,取AB的中点M,连接DM,OM.易知O为BD1的中点,所以AD1OM,则MOD为异面直线AD1与D

    9、B1所成角或其补角.因为在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,AD1=AD2+DD12=2,DM=AD2+(12AB)2=52,DB1=AB2+AD2+DD12=5,所以OM=12AD1=1,OD=12DB1=52,于是在DMO中,由余弦定理,得cosMOD=12+(52)2-(52)22152=55,即异面直线AD1与DB1所成角的余弦值为55,故选C.图D 8-2-7解法三以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,如图D 8-2-8所示.由条件可知D(0,0,0),A(1,0,0),D1(0,0,3),B1(1,1,3)

    10、,所以AD1=(-1,0,3),DB1=(1,1,3),则由向量夹角公式,得cos=AD1DB1|AD1|DB1|=225=55,即异面直线AD1与DB1所成角的余弦值为55,故选C.图D 8-2-84.A对于选项A,如图D 8-2-9,连接NC,PC.在PAC中,M为AP的中点,N为AC的中点,CN,PM交于点A,所以CM与PN共面,故A错误.对于选项B,因为P为线段A1D1上的动点(不包括两个端点),所以ACAP.在MAC中,CM2=AC2+AM2-2ACAMcosMAC=AC2+14AP2-ACAPcosMAC.在PAN中,PN2=AP2+AN2-2APANcosPAN=AP2+14AC2-APACcosPAN,则CM2-PN2=34(AC2-AP2)0,所以CMPN,故B正确.对于选项C,在正方体ABCD-A1B1C1D1中,易知AC平面BDD1B1,即AN平面BDD1B1,又AN平面PAN,所以平面PAN平面BDD1B1,故C正确.对于选项D,连接A1C1,在平面A1B1C1D1内作PKA1C1,交C1D1于K,连接KC.在正方体中,A1C1AC,所以PKAC,PK,AC共面,所以四边形PKCA就是过P,A,C三点的正方体的截面,AA1=CC1,A1P=C1K,所以AP=CK,即梯形PKCA为等腰梯形.故D正确.故选A.图D 8-2-9

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022高三数学(理科)(全国版)一轮复习试题:第8章第2讲 空间点、线、面的位置关系 1 WORD版含解析.docx
    链接地址:https://www.ketangku.com/wenku/file-240975.html
    相关资源 更多
  • 人教版数学五年级上学期期末质量监测试题【培优a卷】.docx人教版数学五年级上学期期末质量监测试题【培优a卷】.docx
  • 《解析》北京市朝阳区2015届高考数学二模试卷(理科) WORD版含解析.doc《解析》北京市朝阳区2015届高考数学二模试卷(理科) WORD版含解析.doc
  • 河南省郑州市第一中学2020届高三上学期期中考试数学(理)试题 WORD版含解析.doc河南省郑州市第一中学2020届高三上学期期中考试数学(理)试题 WORD版含解析.doc
  • 人教版数学五年级上学期期末质量监测试题【含答案】.docx人教版数学五年级上学期期末质量监测试题【含答案】.docx
  • 人教版数学五年级上学期期末质量监测试题【名师系列】.docx人教版数学五年级上学期期末质量监测试题【名师系列】.docx
  • 人教版数学五年级上学期期末质量监测试题【名师推荐】.docx人教版数学五年级上学期期末质量监测试题【名师推荐】.docx
  • 江苏省常州市八校2021-2022学年高二数学下学期期中联考试题(Word版附解析).docx江苏省常州市八校2021-2022学年高二数学下学期期中联考试题(Word版附解析).docx
  • 人教版数学五年级上学期期末质量监测试题【各地真题】.docx人教版数学五年级上学期期末质量监测试题【各地真题】.docx
  • 人教版数学五年级上学期期末质量监测试题【原创题】.docx人教版数学五年级上学期期末质量监测试题【原创题】.docx
  • 河南省郑州市第一中学2020届高三上学期期中考试 数学(理) WORD版含答案.doc河南省郑州市第一中学2020届高三上学期期中考试 数学(理) WORD版含答案.doc
  • 人教版数学五年级上学期期末质量监测试题【历年真题】.docx人教版数学五年级上学期期末质量监测试题【历年真题】.docx
  • 河南省郑州市第一中学2020届高三上学期期中考试 数学(文) WORD版含答案.doc河南省郑州市第一中学2020届高三上学期期中考试 数学(文) WORD版含答案.doc
  • 人教版数学五年级上学期期末质量监测试题【典型题】.docx人教版数学五年级上学期期末质量监测试题【典型题】.docx
  • 人教版数学五年级上学期期末质量监测试题【典优】.docx人教版数学五年级上学期期末质量监测试题【典优】.docx
  • 人教版数学五年级上学期期末质量监测试题【全国通用】.docx人教版数学五年级上学期期末质量监测试题【全国通用】.docx
  • 人教版数学五年级上学期期末质量监测试题【全优】.docx人教版数学五年级上学期期末质量监测试题【全优】.docx
  • 河南省郑州市第一中学2020届高三12月联考数学(理)试题 WORD版含解析.doc河南省郑州市第一中学2020届高三12月联考数学(理)试题 WORD版含解析.doc
  • 人教版数学五年级上学期期末质量监测试题【中心小学】.docx人教版数学五年级上学期期末质量监测试题【中心小学】.docx
  • 人教版数学五年级上学期期末质量监测试题【word】.docx人教版数学五年级上学期期末质量监测试题【word】.docx
  • 人教版数学五年级上学期期末质量监测试题【b卷】.docx人教版数学五年级上学期期末质量监测试题【b卷】.docx
  • 人教版数学五年级上学期期末质量监测试题【a卷】.docx人教版数学五年级上学期期末质量监测试题【a卷】.docx
  • 人教版数学五年级上学期期末质量监测试题word版.docx人教版数学五年级上学期期末质量监测试题word版.docx
  • 人教版数学五年级上学期期末质量监测试题word.docx人教版数学五年级上学期期末质量监测试题word.docx
  • 人教版数学五年级上学期期末质量监测试题ab卷.docx人教版数学五年级上学期期末质量监测试题ab卷.docx
  • 河南省郑州市第一中学2019届高三上学期第一次周测数学(文)试题(2018-8-12) 扫描版含答案.doc河南省郑州市第一中学2019届高三上学期第一次周测数学(文)试题(2018-8-12) 扫描版含答案.doc
  • 人教版数学五年级上学期期末质量监测试题a4版打印.docx人教版数学五年级上学期期末质量监测试题a4版打印.docx
  • 《解析》北京市延庆县2015届高三上学期第一次模拟数学(理)试卷 WORD版含解析.doc《解析》北京市延庆县2015届高三上学期第一次模拟数学(理)试卷 WORD版含解析.doc
  • 人教版数学五年级上学期期末质量监测试题a4版可打印.docx人教版数学五年级上学期期末质量监测试题a4版可打印.docx
  • 江苏省射阳县第二中学2015-2016学年高二上学期第二次学情调研考试数学试题 WORD版含答案.doc江苏省射阳县第二中学2015-2016学年高二上学期第二次学情调研考试数学试题 WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1