2022届高中数学 微专题11 函数零点的性质问题练习(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高中数学 微专题11 函数零点的性质问题练习含解析 2022 高中数学 专题 11 函数 零点 性质 问题 练习 解析
- 资源描述:
-
1、微专题11 函数零点的性质一、基础知识:1、函数零点,方程,图像交点的相互转化:有关零点个数及性质的问题会用到这三者的转化,且这三者各具特点:(1)函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的单调性确定是否存在零点(2)方程:方程的特点在于能够进行灵活的变形,从而可将等号两边的表达式分别构造为两个可分析的函数,为作图做好铺垫(3)图像的交点:通过作图可直观的观察到交点的个数,并能初步判断交点所在区间。三者转化:函数的零点方程的根方程的根函数与的交点2、此类问题的处理步骤:(1)作图:可将零点问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数
2、图像(2)确定变量范围:通过图像与交点位置确定参数和零点的取值范围(3)观察交点的特点(比如对称性等)并选择合适的方法处理表达式的值,3、常见处理方法:(1)代换法:将相等的函数值设为,从而用可表示出,将关于的表达式转化为关于的一元表达式,进而可求出范围或最值(2)利用对称性解决对称点求和:如果关于轴对称,则;同理,若关于中心对称,则也有。将对称的点归为一组,在求和时可与对称轴(或对称中心)找到联系二、典型例题:例1:已知函数,若,且,则的取值范围是( )A. B. C. D. 思路:先做出的图像,通过图像可知,如果,则,设,即,由范围可得:,从而,所以,而,所以答案:C小炼有话说:(1)此类
3、问题如果图像易于作出,可先作图以便于观察函数特点(2)本题有两个关键点,一个是引入辅助变量,从而用表示出,达到消元效果,但是要注意是有范围的(通过数形结合需与有两交点);一个是通过图像判断出的范围,从而去掉绝对值。例2:已知函数 ,若有三个不同的实数,使得 ,则的取值范围是_思路:的图像可作,所以考虑作出的图像,不妨设,由图像可得: ,且关于轴对称,所以有,再观察,且,所以,从而 答案: 小炼有话说:本题抓住关于对称是关键,从而可由对称求得,使得所求式子只需考虑的范围即可例3:定义在上的奇函数,当时,则关于的函数的所有零点之和为( ) A. B. C. D. 思路:为奇函数,所以考虑先做出正半
4、轴的图像,再利用对称作出负半轴图像,当时,函数图象由两部分构成,分别作出各部分图像。的零点,即为方程的根,即图像与直线的交点。观察图像可得有5个交点:关于对称,且满足方程即,解得:,关于轴对称,答案:B例4:已知,函数的零点分别为,函数的零点分别为,则的最小值为( )A. B. C. D. 思路:从解析式中发现可看做与的交点,可看做与的交点,且,从而均可由进行表示,所以可转化为关于的函数,再求最小值即可解:由图像可得: 答案:B例5:已知函数有两个不同的零点,则( )A. B. C. D. 思路:可将零点化为方程的根,进而转化为与的交点,作出图像可得,进而可将中的绝对值去掉得: ,观察选项涉及
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
