2022届高中数学 微专题39 传统不等式的解法练习(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高中数学 微专题39 传统不等式的解法练习含解析 2022 高中数学 专题 39 传统 不等式 解法 练习 解析
- 资源描述:
-
1、微专题39 传统不等式的解法一、基础知识1、一元二次不等式: 可考虑将左边视为一个二次函数,作出图像,再找出轴上方的部分即可关键点:图像与轴的交点2、高次不等式(1)可考虑采用“数轴穿根法”,分为以下步骤:(令关于的表达式为,不等式为)求出的根 在数轴上依次标出根 从数轴的右上方开始,从右向左画。如同穿针引线穿过每一个根 观察图像, 寻找轴上方的部分 寻找轴下方的部分(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式3、分式不等式(1)将分母含有的表达式称为分式,即为的形式(2)分式若成立,则必须满足分母不为零,即 (3)对形如的不等式,可根
2、据符号特征得到只需 同号即可,所以将分式不等式转化为 (化商为积),进而转化为整式不等式求解4、含有绝对值的不等式(1)绝对值的属性:非负性(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方(3)若不等式满足以下特点,可直接利用公式进行变形求解: 的解集与或的解集相同 的解集与的解集相同(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理5、指对数不等式的解法:(1)先讲一个不等式性质与函数的故事 在不等式的基本性质中,有一些性质可从函数的角度分析,例如:,可发现不等
3、式的两边做了相同的变换(均加上),将相同的变换视为一个函数,即设,则,因为为增函数,所以可得:,即成立,再例如: ,可设函数,可知时,为增函数,时,为减函数,即 由以上两个例子我们可以得出:对于不等式两边作相同变换的性质,可将变换视为一个函数,则在变换时不等号是否发生改变,取决于函数的增减性。增函数不变号,减函数变号 在这种想法的支持下,我们可以对不等式的变形加以扩展,例如:,则的关系如何?设,可知的单调减区间为,由此可判断出:当 同号时,(2)指对数不等式:解指对数不等式,我们也考虑将其转化为整式不等式求解,那么在指对数变换的过程中,不等号的方向是否变号呢?先来回顾指对数函数的性质:无论是还
4、是,其单调性只与底数有关:当时,函数均为增函数,当时,函数均为减函数,由此便可知,不等号是否发生改变取决于底数与1的大小,规律如下:时, 时, 进而依据这两条便可将指对不等式转化为整式不等式求解了(3)对于对数的两个补充 对数能够成立,要求真数大于0,所以在解对数不等式时首先要考虑真数大于0这个条件,如当时, 如何将常数转化为某个底的对数。可活用“1”:因为,可作为转换的桥梁例如:? 某些不等式虽然表面形式复杂,但如果把其中一部分视为一个整体,则可对表达式进行简化,进而解决问题,例如:,可将为视为一个整体,令,则,则不等式变为,两边可同取以2为底对数 6、利用换元法解不等式(1)换元:属于化归
5、时常用的一种方法,本质是研究对象的选取,不受题目所给字母的限制,而是选择合适的对象能把陌生问题进行化归,转化为能够解决的问题。如上一个例子中,通过将视为整体,从而将不等式转化为一元二次不等式进行求解(2)在换元的过程中,用新字母代替原来的字母和式子,将问题转化为新字母的问题,从而要先了解新字母的取值范围。即若换元,则先考虑新元的初始范围(3)利用换元法解不等式的步骤通常为:选择合适的对象进行换元:观察不等式中是否有相同的结构,则可将相同的结构视为一个整体求出新元的初始范围,并将原不等式转化为新变量的不等式解出新元的范围在根据新元的范围解的范围二、典型例题:例1:解下列一元二次不等式:(1) (
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
