2022届高中数学讲义微专题68 离心率问题 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高中数学讲义微专题68 离心率问题 WORD版含解析 2022 高中数学 讲义 专题 68 离心 问题 WORD 解析
- 资源描述:
-
1、微专题68 圆锥曲线的离心率问题 离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数之间的联系。一、基础知识:1、离心率公式: (其中为圆锥曲线的半焦距)(1)椭圆: (2)双曲线:2、圆锥曲线中的几何性质及联系(1)椭圆:, :长轴长,也是同一点的焦半径的和: :短轴长 椭圆的焦距(2)双曲线: :实轴长,也是同一点的焦半径差的绝对值: :虚轴长 椭圆的焦距3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三
2、角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与有关,另一条边为焦距。从而可求解(2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用进行表示,再利用条件列出等式求解2、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用表示,且点坐标的范围就是求离心率范围的突破口(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可(3)通过一些不等关系得到关于的不等式,进而解出离心率注
3、:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:,双曲线:二、典型例题:例1:设分别是椭圆的左、右焦点,点在椭圆上,线段的中点在轴上,若,则椭圆的离心率为( )A B C D 思路:本题存在焦点三角形,由线段的中点在轴上,为中点可得轴,从而,又因为,则直角三角形中,且,所以答案:A 小炼有话说:在圆锥曲线中,要注意为中点是一个隐含条件,如果图中存在其它中点,则有可能与搭配形成三角形的中位线。例2:椭圆与渐近线为的双曲线有相同的焦点,为它们的一个公共点,且,则椭圆的离心率为_思路:本题的突破口在于椭圆与双曲线共用一对焦点,设,在双曲线中,不妨设在第一象限,则由椭圆定义可得:,由
4、双曲线定义可得:,因为,而代入可得: 答案: 小炼有话说:在处理同一坐标系下的多个圆锥曲线时,它们共同的要素是联接这些圆锥曲线的桥梁,通常以这些共同要素作为解题的关键点。例3:如图所示,已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为( )A. B. C. D. 思路:本题没有焦半径的条件,考虑利用点的坐标求解,则将所涉及的点坐标尽力用 表示,再寻找一个等量关系解出 的关系。双曲线的渐近线方程为,由直线的倾斜角是渐近线倾斜角的2倍可得:,确定直线l的方程为,与渐近线联立方程得将转化为坐标语言,则 ,即,解得,从而答案:B例4:设
5、分别为双曲线的左、右焦点,双曲线上存在一点使得则该双曲线的离心率为 A. B. C. D.3思路:条件与焦半径相关,所以联想到,进而与找到联系,计算出的比例,从而求得解:即 解得:(舍)或 答案:B例5:如图,在平面直角坐标系中,为椭圆的四个顶点,为其右焦点,直线与直线相交于点T,线段与椭圆的交点恰为线段的中点,则该椭圆的离心率为 . 思路:本题涉及的条件多与坐标有关,很难联系到参数的几何意义,所以考虑将点的坐标用进行表示,在利用条件求出离心。首先直线的方程含,联立方程后交点的坐标可用进行表示(),则中点,再利用点在椭圆上即可求出离心率解:直线的方程为:;直线的方程为:,联立方程可得:解得:,
6、 则在椭圆上, 解得:答案:例6:已知F是双曲线的左焦点,是该双曲线的右顶点,过点且垂直于轴的直线与双曲线交于两点,若是锐角三角形,则该双曲线的离心率的取值范围为 ( )A B C D 思路:从图中可观察到若为锐角三角形,只需要为锐角。由对称性可得只需即可。且均可用表示,是通径的一半,得:,所以,即答案:B小炼有话说:(1)在处理有关角的范围时,可考虑利用该角的一个三角函数值,从而将角的问题转变为边的比值问题(2)本题还可以从直线的斜率入手,利用即可求出离心率例7:已知椭圆的左、右焦点分别为,若椭圆上存在点使,则该椭圆的离心率的取值范围为( ) A. B. C. D. 思路:为焦点三角形的内角
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
