2022届高考数学基础总复习提升之专题突破详解 专题27 直线与圆锥曲线(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高考数学基础总复习提升之专题突破详解 专题27 直线与圆锥曲线含解析 2022 高考 数学 基础 复习 提升 专题 突破 详解 27 直线 圆锥曲线 解析
- 资源描述:
-
1、专题27 直线与圆锥曲线一命题陷阱1.不用韦达定理与用韦达定理的选择陷阱2.范围不完备陷阱3.圆锥曲线中三角形面积公式选取陷阱4不用定义直接化简的陷阱(圆锥曲线定义的灵活运用)5.圆锥曲线中的求定点、定直线只考虑一般情况不考虑特殊位置陷阱6.圆锥曲线中的求定值只考虑一般情况不考虑特殊位置陷阱二、知识回顾1.椭圆的标准方程(1) ,焦点,其中(2) ,焦点,其中2.双曲线的标准方程(1) ,焦点,其中(2) ,焦点,其中3抛物线的标准方程(1) 对应的焦点分别为:.三典例分析1.不用韦达定理与用韦达定理的选择陷阱例1. 设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点,到抛物线的准线的距
2、离为.(I)求椭圆的方程和抛物线的方程;(II)设上两点,关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.【答案】 (1), .(2),或.()解:设直线的方程为,与直线的方程联立,可得点,故.将与联立,消去,整理得,解得,或.由点异于点,可得点.由,可得直线的方程为,令,解得,故.所以.又因为的面积为,故,整理得,解得,所以.所以,直线的方程为,或.【陷阱防范】:分析题目条件与所求关系,恰当选取是否使用韦达定理练习1. 已知椭圆,且椭圆上任意一点到左焦点的最大距离为,最小距离为.(1)求椭圆的方程;(2)过点的动直线交椭圆于两点,试问:在坐标平面上是否存
3、在一个定点,使得以线段为直径的圆恒过点?若存在,求出点的坐标:若不存在,请说明理由.【答案】(1) 椭圆方程为;(2) 以线段为直径的圆恒过点.下面证明为所求:若直线的斜率不存在,上述己经证明. 若直线的斜率存在,设直线, ,由得, .,即以线段为直径的圆恒过点.练习2.设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点,到抛物线的准线的距离为.(I)求椭圆的方程和抛物线的方程;(II)设上两点,关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.【答案】 (1), .(2),或.【解析】()设的坐标为.依题意,解得,于是.所以,椭圆的方程为,抛物线的方
4、程为.练习3. 已知椭圆: ,曲线上的动点满足:.(1)求曲线的方程;(2)设为坐标原点,第一象限的点分别在和上, ,求线段的长.【答案】(1) ;(2) .【解析】(1)由已知,动点到点, 的距离之和为,且,所以动点的轨迹为椭圆,而, ,所以,故椭圆的方程为. (2)两点的坐标分别为,由及(1)知, 三点共线且点不在轴上,因此可设直线的方程为.将代入中,得,所以,将代入中,得,所以,又由,得,即,解得,故2.范围不完备陷阱例2. 已知椭圆: 的离心率为,以椭圆长、短轴四个端点为顶点为四边形的面积为.()求椭圆的方程;()如图所示,记椭圆的左、右顶点分别为、,当动点在定直线上运动时,直线分别交
5、椭圆于两点、,求四边形面积的最大值.【答案】();() .【解析】()由题设知, ,又,解得,故椭圆的方程为.故四边形的面积为 .由于,且在上单调递增,故,从而,有.当且仅当,即,也就是点的坐标为时,四边形的面积取最大值6.【陷阱防范】:涉及含参数问题,求最值或范围时要注意运用均值不等式还是运用函数的单调性.练习1.设点,动圆经过点且和直线相切,记动圆的圆心的轨迹为曲线. (1)求曲线的方程;(2)设曲线上一点的横坐标为,过的直线交于一点,交轴于点,过点作的垂线交于另一点,若是的切线,求的最小值.【答案】(1)(2)【解析】(1)过点作直线垂直于直线于点,由题意得,所以动点的轨迹是以为焦点,直
6、线为准线的抛物线.所以抛物线得方程为.,解得,或.而抛物线在点的切线斜率, , 是抛物线的切线, ,整理得,解得(舍去),或.练习2. 已知双曲线的离心率为,点(,0)是双曲线的一个顶点。(1)求双曲线的方程;(2)经过双曲线右焦点作倾斜角为的直线,直线与双曲线交于不同的两点,求的长。【答案】(1)(2)【解析】(1)因为双曲线的离心率为,点(,0)是双曲线的一个顶点,所以,即(2)经过双曲线右焦点作倾斜角为的直线 与双曲线联立方程组消y得 ,由弦长公式解得 练习3. 已知椭圆的方程为,双曲线的一条渐近线与轴所成的夹角为,且双曲线的焦距为.(1)求椭圆的方程;(2)设分别为椭圆的左,右焦点,过
7、作直线 (与轴不重合)交椭圆于, 两点,线段的中点为,记直线的斜率为,求的取值范围.【答案】(1);(2).【解析】(1)一条渐近线与轴所成的夹角为知,即,又,所以,解得, ,所以椭圆的方程为.(2)由(1)知,设, ,设直线的方程为.联立得,由得,又,所以直线的斜率.当时, ;当时, ,即.综合可知,直线的斜率的取值范围是.练习4.如图,在平面直角坐标系中,已知直线,抛物线(1)若直线过抛物线的焦点,求抛物线的方程;(2)已知抛物线上存在关于直线对称的相异两点和.求证:线段的中点坐标为;求的取值范围.【答案】(1)(2)详见解析,由消去得因为P 和Q是抛物线C上的相异两点,所以从而,化简得.
8、方程(*)的两根为,从而因为在直线上,所以因此,线段PQ的中点坐标为因为在直线上所以,即由知,于是,所以因此的取值范围为【方法总结】在利用代数法解决范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围3.圆锥曲线中三角形面积公式选取陷阱例3. 已知圆,圆心为,定点, 为圆上一点,线段上一点满足,直线上一点,满足()求点的轨
9、迹的方程;()为坐标原点, 是以为直径的圆,直线与相切,并与轨迹交于不同的两点当且满足时,求面积的取值范围【答案】();() .设椭圆的标准方程为, 则, ,.点的轨迹的方程为。()圆与直线相切,即,由,消去.直线与椭圆交于两个不同点,将代入上式,可得,设, ,则, , ,解得.满足。又,设,则. ,故面积的取值范围为。【陷阱防范】:涉及到三角形面积时用弦长公式还是用把三角形分成两个或几个三角形求面积练习1. 设, 是椭圆上的两点,椭圆的离心率为,短轴长为2,已知向量, ,且, 为坐标原点.(1)若直线过椭圆的焦点,( 为半焦距),求直线的斜率的值;(2)试问: 的面积是否为定值?如果是,请给
10、予证明;如果不是,请说明理由.【答案】(1);(2)见解析.(2)直线斜率不存在时,即, ,即 又点在椭圆上 ,即 , ,故的面积为定值1当直线斜率存在时,设的方程为,联立得: , , 所以三角形的面积为定值1.练习2.设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点,到抛物线的准线的距离为.(I)求椭圆的方程和抛物线的方程;(II)设上两点,关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.【答案】 (1), .(2),或.【解析】()设的坐标为.依题意,解得,于是.所以,椭圆的方程为,抛物线的方程为.()解:设直线的方程为,与直线的方程联立,可得
11、点,故.将与联立,消去,整理得,解得,或.由点异于点,可得点.由,可得直线的方程为,令,解得,故.所以.又因为的面积为,故,整理得,解得,所以.所以,直线的方程为,或.4不用定义直接化简的陷阱(圆锥曲线定义的灵活运用)例4. 已知椭圆与抛物线共焦点,抛物线上的点M到y轴的距离等于,且椭圆与抛物线的交点Q满足(I)求抛物线的方程和椭圆的方程;(II)过抛物线上的点作抛物线的切线交椭圆于、 两点,设线段AB的中点为,求的取值范围【答案】(1);(2)【解析】(1)抛物线上的点到轴的距离等于,点M到直线的距离等于点到焦点的距离,得是抛物线的准线,即,解得,抛物线的方程为;可知椭圆的右焦点,左焦点,由
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-247660.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
四年级上册语文课件-第5单元 18争吵|语文S版 (共21张PPT).ppt
