2022届高考数学统考一轮复习 第八章 平面解析几何 第八节 直线与圆锥曲线的综合问题 第2课时 定点、定值、探究性问题课时规范练(文含解析)北师大版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高考数学统考一轮复习 第八章 平面解析几何 第八节 直线与圆锥曲线的综合问题 第2课时 定点、定值、探究性问题课时规范练文含解析北师大版 2022 高考 数学 统考 一轮 复习 第八 平面
- 资源描述:
-
1、第八章平面解析几何第八节直线与圆锥曲线的综合问题第二课时定点、定值、探究性问题课时规范练1已知抛物线C:x22py(p0),圆O:x2y21.(1)若抛物线C的焦点F在圆O上,且A为抛物线C和圆O的一个交点,求|AF|;(2)若直线l与抛物线C和圆O分别相切于点M,N,求|MN|的最小值及相应p的值解析:(1)由题意得F(0,1),从而抛物线C:x24y.解方程组得y2.不妨设yA2,|AF|1.(2)设M(x0,y0)(y00),则切线l:y(xx0)y0,结合x2py0,整理得x0xpypy00.由ONl且|ON|1得1,即|py0|,p且y10.|MN|2|OM|21xy12py0y1y
2、14(y1)8,当且仅当y0时等号成立|MN|的最小值为2,此时p.2.已知椭圆C的方程为1,A是椭圆上的一点,且A在第一象限内,过A且斜率等于1的直线与椭圆C交于另一点B,点A关于原点的对称点为D.(1)证明:直线BD的斜率为定值;(2)求ABD面积的最大值解析:(1)证明:设D(x1,y1),B(x2,y2),则A(x1,y1),直线BD的斜率k,由两式相减得,kAB1,k,故直线BD的斜率为定值.(2)连接OB(图略),A,D关于原点对称,SABD2SOBD,由(1)可知BD的斜率k,设BD的方程为yxt,D在第三象限,t1且t0,O到BD的距离d,由,整理得3x24tx4t280,x1
3、x2,x1x2,SABD2SOBD2|BD|d|t|t|2.当且仅当t时,SABD取得最大值2.3. (2020承德模拟)如图所示,椭圆E:1(ab0)的离心率是,点P(0,1)在短轴CD上,且1.(1)求椭圆E的方程;(2)设O为坐标原点,过点P的动直线与椭圆交于A,B两点是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由解析:(1)由已知,点C,D的坐标分别为(0,b),(0,b)又点P的坐标为(0,1),且1,于是解得a2,b.所以椭圆E的方程为1.(2)当直线AB的斜率存在时,设直线AB的方程为ykx1,点A,B的坐标分别为(x1,y1),(x2,y2)联立得(2k21)x
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-248508.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2018-2019学年九年级语文下册课件:双休作业8 (共13张PPT).ppt
