2022年新高考数学 小题狂练(17)(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年新高考数学 小题狂练17含解析 2022 新高 数学 小题狂练 17 解析
- 资源描述:
-
1、小题狂练(17)一、单选题(本大题共8小题,每小题5分,共40分四个选项中只有一项符合题目要求)1. 已知集合,集合,则的子集个数为( )A. 2B. 4C. 8D. 16【答案】C【解析】试题分析:由,解得,所以,所以,所以的子集个数为,故选C考点:1、不等式的解法;2、集合的交集运算;3、集合的子集2. 已知函数g(x)=3x+t的图象不经过第二象限,则t的取值范围为A. t1B. t1C. t3D. t3【答案】A【解析】【分析】由指数函数的性质,可得函数恒过点坐标为,且函数是增函数,图象不经过第二象限,得到关于的不等式,即可求解.【详解】由指数函数性质,可得函数g(x)=3x+t恒过点
2、坐标为(0,1+t),函数g(x)是增函数,图象不经过第二象限,1+t0,解得t1故选A【点睛】本题主要考查了指数函数的图象与性质的应用,其中熟记指数函数的图象与性质,特别是指数函数的图象恒过定点是解答本题的关键,着重考查了推理与运算能力,属于基础题.3. 在一组样本数据,(,不全相等)的散点图中,若所有样本点都在直线上,则这组样本数据的样本相关系数为( )A. -3B. 0C. -1D. 1【答案】C【解析】因为所有样本点都在直线上,所以回归直线方程是,可得这两个变量是负相关,故这组样本数据的样本相关系数为负值,且所有样本点,都在直线上,则有相关系数,故选C.4. 我国南宋著名数学家秦九韶提
3、出了由三角形三边求三角形面积的“三斜求积”,设的三个内角所对的边分别为,面积为,则“三斜求积”公式为,若,,则用“三斜求积”公式求得的面积为( )A B. C. D. 2【答案】D【解析】【分析】由已知利用正弦定理可求得,进而可求得代入“三斜求积”公式即可求得结果.【详解】,,因为,所以,从而的面积为.故选:D.【点睛】本题考查正弦定理以及新定义的理解,考查分析问题的能力和计算求解能力,难度较易.5. 如图是当取三个不同值,时的三种正态曲线,那么,的大小关系是( )A. B. C. D. 【答案】D【解析】【分析】由正态分布曲线性质,可得结论【详解】由图可知,三种正态曲线的都等于由一定时,越小
4、,曲线越“高瘦”,表示总体的分布越集中,越大,曲线越“矮胖”,表示总体的分布越分散,则故选:D【点睛】本题主要考查了正态分布的性质的应用,属于基础题.6. 设数列,均为等差数列,它们的前项和分别为,若,则( )A. B. C. D. 【答案】B【解析】【分析】由数列,为等差数列,根据等差数列的前项和公式和性质,可得,即得答案.【详解】数列,均为等差数列,它们的前项和分别为,.故选:.【点睛】本题考查等差数列的前项和公式和性质,属于中档题.7. 双曲线的左、右焦点分别为,且恰好为抛物线的焦点,设双曲线与该抛物线的一个交点为,若,则双曲线的离心率为( )A. B. C. D. 【答案】A【解析】【
5、分析】由已知条件得双曲线、抛物线焦点,求出点坐标,再由双曲线定义求得的值,继而求出双曲线的离心率【详解】为抛物线的焦点,故点坐标为或,则解得,又,故选【点睛】本题主要考查了求双曲线离心率问题,运用双曲线定义结合已知条件即可得到结果,较为简单8. 设函数是函数的导函数,当时,则函数的零点个数为( )A. B. C. D. 【答案】D【解析】【分析】构造函数,可得出,利用导数研究函数的单调性,得出该函数的最大值为负数,从而可判断出函数无零点,从而得出函数的零点个数.【详解】设,则.当时,当时,故,所以,函数在上单调递减;当时,故,所以,函数在上单调递增.所以,所以,函数没有零点,故也没有零点.故选
6、:D.【点睛】本题考查函数零点个数的判断, 解题的关键就是要结合导数不等式构造新函数,并利用导数分析函数的单调性与最值,必要时借助零点存在定理进行判断,考查分析问题和解决问题的能力,属于中等题.二、多选题(本大题共4小题,每小题5分,共20分在每小题给出的四个选项中,有多项符合题目要求的,全选对得5分,选对但不全的得3分,有选错的得0分)9. 在某次高中学科知识竞赛中,对4000名考生的参赛成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为,60分以下视为不及格,若同一组中数据用该组区间中间值作代表值,则下列说法中正确的是( )A. 成绩在的考生人数最多B. 不及格的考生人数为10
7、00C. 考生竞赛成绩的平均分约为70.5分D. 考生竞赛成绩的中位数为75分【答案】ABC【解析】【分析】因为成绩出现在70,80的频率最大,故A正确;不及格考生数为10(0.010+0.015)40001000,故B正确;根据频率分布直方图估计考试的平均分为70.5,C正确;估计中位数为71.67,D错误【详解】由频率分布直方图可得,成绩在的频率最高,因此考生人数最多,故A正确;成绩在的频率为,因此,不及格的人数为,故B正确;考生竞赛成绩的平均分约为,故C正确;因为成绩在的频率为0.45,在的频率为0.3,所以中位数为,故D错误.故选ABC.【点睛】本题考查了频率分布直方图,以及用频率分布
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2018-2019学年高中语文苏教版必修五课件:第1章 足下的文化与野草之美 .ppt
