2022年新高考数学 小题狂练(42)(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年新高考数学 小题狂练42含解析 2022 新高 数学 小题狂练 42 解析
- 资源描述:
-
1、小题狂练(42)一单选题1. 下列函数与函数相等的是( )A. B. C. D. 【答案】C【解析】【分析】本题先求函数的定义域为,函数的值域为,函数的定义域为,并判断与函数不同,排除ABD,再判断与的定义域、值域、对应关系都相同,最后得到答案.【详解】解:因为函数的定义域为,而函数的定义域为,故A选项错误;因为函数的值域为,而函数的值域为,故B选项错误;因为函数的定义域为,而函数的定义域为,故D选项错误;因为与的定义域、值域、对应关系都相同,故C选项正确.故选:C【点睛】本题考查函数的定义、判断函数是否为同一函数,是基础题.2. 函数的定义域为( )A. B. C. D. 【答案】B【解析】
2、【分析】根据函数成立的条件建立不等式关系进行求解即可【详解】解:要使函数有意义,则,得,即或,即函数的定义域为,故选:【点睛】本题主要考查函数定义域的求解,结合函数成立的条件建立不等式是解决本题的关键属于基础题3. 若,则( )A. B. C. D. 【答案】A【解析】【分析】由两角差的正切公式计算【详解】由题意故选:A【点睛】本题考查两角差的正切公式,属于基础题4. 函数(,)的部分图象如图所示,则函数的解析式为( )A. B. C. D. 【答案】A【解析】【分析】由函数的部分图象求解析式,由函数的图象的顶点坐标求出,由周期求出,由五点法作图求出的值,可得函数的解析式【详解】根据函数,的部
3、分图象,可得,再根据五点法作图,可得,故,故选:A【点睛】本题主要考查根据三角函数的图象求函数的解析式,意在考查学生对这些知识的理解掌握水平.5. 为得到函数的图象,只需将的图象( )A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】A【解析】【分析】先将转化为,再利用三角函数图象变换的知识,得出正确选项.【详解】,所以向左平移个单位长度,得到函数的图象.故选:A【点睛】本小题主要考查三角函数图象变换,考查诱导公式,属于基础题.6. 定义在R上的函数是奇函数,为偶函数,若,则( )A. B. 0C. 2D. 3【答案】B【解析】【分析】根据
4、函数的奇偶性,对称性求出函数的周期是8,结合周期性,对称性进行转化求解即可【详解】解:为偶函数,即函数的图象关于对称,是奇函数,且,函数的周期是8,故选:B【点睛】本题主要考查函数值的计算,结合函数奇偶性和对称性求出函数的周期性,以及利用周期性进行转化是解决本题的关键,属于中档题7. 已知函数,则,的大小关系为( )A. B. C. D. 【答案】A【解析】【分析】首先判断函数的单调性,再根据指数函数、对数函数的性质得到,即可得解;【详解】解:因为,定义域为,在定义域上单调递增,在定义域上单调递减,所以在定义域上单调递增,由, 所以即故选:A【点睛】本题考查指数函数、对数函数的性质的应用,属于
5、基础题.8. 已知函数为的零点,为图象的对称轴,且在单调,则的最大值为A. 11B. 9C. 7D. 5【答案】B【解析】【分析】根据已知可得为正奇数,且12,结合x为f(x)的零点,x为yf(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得的最大值【详解】x为f(x)的零点,x为yf(x)图象的对称轴,即,(nN)即2n+1,(nN)即为正奇数,f(x)在(,)上单调,则,即T,解得:12,当11时,k,kZ,|,此时f(x)在(,)不单调,不满足题意;当9时,k,kZ,|,此时f(x)在(,)单调,满足题意;故的最大值为9,故选B【点睛】本题将三角函数的单调性与对
6、称性结合在一起进行考查,题目新颖,是一道考查能力的好题.注意本题求解中用到的两个结论:的单调区间长度是最小正周期的一半;若的图像关于直线对称,则或.二、多项选择题:本题共4小题在每小题给出的四个选项中,有多项符合题目要求9.Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的2019年1月至2019年11月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论正
7、确的是( )A. 月跑步里程最小值出现在2月B. 月跑步里程逐月增加C. 月跑步里程的中位数为5月份对应的里程数D. 1月至5月的月跑步里程相对于6月至11月波动性更小【答案】ACD【解析】【分析】根据折线图,依次分析月跑步里程的最小值,中位数,变化趋势,波动性即得解【详解】由折线图可知,月跑步里程的最小值出现在2月,故A正确;月跑步平均里程不是逐月增加的,故B不正确;月跑步里程数从小到大排列分别是:2月,8月,3月,4月,1月,5月,7月,6月,11月,9月,10月,故5月份对应的里程数为中位数,故C正确;1月到5月的月跑步平均里程相对于6月至11月波动性更小,变化比较平稳,故D正确.故选:
8、ACD【点睛】本题考查了统计图表折线图的应用,考查了学生综合分析,数形结合,数据处理能力,属于基础题10.已知函数,下列结论正确的是( )A. 函数图像关于对称B. 函数上单调递增C. 若,则D. 函数的最小值为【答案】A【解析】【分析】本题首先可以去绝对值,将函数变成分段函数,然后根据函数解析式绘出函数图像,最后结合函数图像即可得出答案.【详解】由题意可得: ,即可绘出函数图像,如下所示:故对称轴为,A正确;由图像易知,函数在上单调递增,上单调递减,B错误;要使,则,由图象可得或、或,故或或,C错误;当时,函数取最小值,最小值,D错误,故选:A【点睛】本题考查三角函数的相关性质,主要考查三角
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
