分享
分享赚钱 收藏 举报 版权申诉 / 24

类型江苏专用2022高考数学二轮复习专题三数列考点整合理.docx

  • 上传人:a****
  • 文档编号:300143
  • 上传时间:2025-11-23
  • 格式:DOCX
  • 页数:24
  • 大小:163.92KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    江苏 专用 2022 高考 数学 二轮 复习 专题 数列 考点 整合
    资源描述:

    1、【创新设计】(江苏专用)2022高考数学二轮复习 专题三 数列考点整合 理第1讲等差数列、等比数列的基本问题高考定位高考对本内容的考查主要有:(1)数列的概念是A级要求,了解数列、数列的项、通项公式、前n项和等概念,一般不会单独考查;(2)等差数列、等比数列是两种重要且特殊的数列,要求都是C级真 题 感 悟1(2022江苏卷)设数列an满足a11,且an1ann1(nN*),则数列前10项的和为_解析a11,an1ann1,a2a12,a3a23,anan1n,将以上n1个式子相加得ana123n,即an,令bn,故bn2,故S10b1b2b102.答案2(2022江苏卷)在各项均为正数的等比

    2、数列an中,若a21,a8a62a4,则a6的值是_解析因为a8a2q6,a6a2q4,a4a2q2,所以由a8a62a4得a2q6a2q42a2q2,消去a2q2,得到关于q2的一元二次方程(q2)2q220,解得q22,a6a2q41224.答案43(2022江苏卷)函数yx2(x0)的图象在点(ak,a)处的切线与x轴交点的横坐标为ak1,k为正整数,a116,则a1a3a5_解析在点(ak,a)处的切线方程为:ya2ak(xak),当y0时,解得x,所以ak1,故an是a116,q的等比数列,即an16,a1a3a5164121.答案214(2022江苏卷)在正项等比数列an中,a5,

    3、a6a73.则满足a1a2ana1a2an的最大正整数n的值为_解析由已知条件得qq23,即q2q60,解得q2,或q3(舍去),ana5qn52n52n6,a1a2an(2n1),a1a2an2524232n6,由a1a2ana1a2an,可知2n525,由2n525,可求得n的最大值为12,而当n13时,28250),则ckx3,ck1(x5)3,ck2(x10)3.若cck1ck2,则(x5)3(x10)3.化简得2x215x500,解得x10;进而求得k1,t5;若cckck2,同理可得(x5)2x(x10),显然无解;若cckck1,同理可得(x10)2x(x5),方程无整数根综上所

    4、述,存在k1,t5适合题意第2讲数列的综合应用高考定位高考对本内容的考查主要有:(1)通过适当的代数变形后,转化为等差数列或等比数列的问题;(2)求数列的通项公式及其前n项和的基本的几种方法;(3)数列与函数、不等式的综合问题题型一般为解答题,且为压轴题真 题 感 悟 (2022江苏卷)设a1,a2,a3,a4是各项为正数且公差为d(d0)的等差数列(1)证明:2a1,2a2,2a3,2a4依次构成等比数列;(2)是否存在a1,d,使得a1,a,a,a依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a,a,a,a依次构成等比数列?并说明理由(1)证明因为an2d(n1,

    5、2,3)是同一个常数,所以2a1,2a2,2a3,2a4依次构成等比数列,(2)解不存在,理由如下:令a1da,则a1,a2,a3,a4分别为ad,a,ad,a2d(ad,a2d,d0)假设存在a1,d,使得a1,a,a,a依次构成等比数列,则a4(ad)(ad)3,且(ad)6a2(a2d)4.令t,则1(1t)(1t)3,且(1t)6(12t)4,化简得t32t220(*),且t2t1.将t2t1代入(*)式,t(t1)2(t1)2t23tt13t4t10,则t.显然t不是上面方程的解,矛盾,所以假设不成立因此不存在a1,d,使得a1,a,a,a依次构成等比数列(3)解不存在,理由如下:假

    6、设存在a1,d及正整数n,k,使得a,a,a,a依次构成等比数列,则a(a12d)n2k(a1d)2(nk),且(a1d)nk(a13d)n3k(a12d)2(n2k)分别在两个等式的两边同除以a及a,并令t,则(12t)n2k(1t)2(nk),且(1t)nk(13t)n3k(12t)2(n2k)将上述两个等式两边取对数,得(n2k)ln(12t)2(nk)ln(1t),且(nk)ln(1t)(n3k)ln(13t)2(n2k)ln(12t)化简得2kln(12t)ln(1t)n2ln(1t)ln(12t),且3kln(13t)ln(1t)n3ln(1t)ln(13t)再将这两式相除,化简得

    7、ln(13t)ln(12t)3ln(12t)ln(1t)4ln(13t)ln(1t)(*)令g(t)4ln(13t)ln(1t)ln(13t)ln(12t)3ln(12t)ln(1t),则g(t).令(t)(13t)2ln(13t)3(12t)2ln(12t)3(1t)2ln(1t),则(t)6(13t)ln(13t)2(12t)ln(12t)(1t)ln(1t)令1(t)(t),则1(t)63ln(13t)4ln(12t)ln(1t)令2(t)1(t),则2(t)0.由g(0)(0)1(0)2(0)0,2(t)0,知2(t),1(t),(t),g(t)在和(0,)上均单调故g(t)只有唯一零

    8、点t0,即方程(*)只有唯一解t0,故假设不成立所以不存在a1,d及正整数n,k,使得a,a,a,a依次构成等比数列考 点 整 合1数列求和的常用方法(1)公式法:直接利用等差数列、等比数列的求和公式求解(2)倒序相加法:适用于与首、末等距离的两项之和等于首、末两项之和,且和为常数的数列等差数列前n项和公式的推导就使用了倒序相加法,利用倒序相加法求解数列前n项和时,要把握数列通项公式的基本特征,即通过倒序相加可以得到一个常数列,或者等差数列、等比数列,从而转化为常见数列的求和方法,这也是数学转化与化归思想的具体体现(3)错位相减法:适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列把

    9、Sna1a2an两边同乘以相应等比数列的公比q,得到qSna1qa2qanq,两式错位相减即可求出Sn.(4)裂相相消法:即将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中an是各项均不为零的等差数列,c为常数)的数列(5)拆项分组法:把数列的每一项拆成两项(或多项),再重新组合成两个(或多个)简单的数列,最后分别求和(6)并项求和法:与拆项分组相反,并项求和是把数列的两项(或多项)组合在一起,重新构成 一个数列再求和,一般适用于正负相间排列的数列求和,注意对数列项数奇偶性的讨论2数列单调性的常见题型及处理方法如下:(1)求最大(小)项时,可

    10、利用数列单调性;函数单调性;导数(2)求参数范围时,可利用作差法;同号递推法;先猜后证法3数列中的不等式问题主要有证明数列不等式、比较大小或恒成立问题,解决方法如下:(1)利用数列(或函数)的单调性;(2)放缩法:先求和后放缩;先放缩后求和,包括放缩后成等差(或等比)数列再求和,或者放缩后成等差比数列再求和,或者放缩后裂项相消后再求和;(3)数学归纳法.热点一有关数列中计算的综合问题【例1】 (2022江苏卷)设M为部分正整数组成的集合,数列an的首项a11,前n项的和为Sn,已知对任意的整数kM,当整数nk时,SnkSnk2(SnSk)都成立(1)设M1,a22,求a5的值;(2)设M3,4

    11、,求数列an的通项公式解(1)由题设知,当n2时,Sn1Sn12(SnS1),即(Sn1Sn)(SnSn1)2S1,从而an1an2a12.又a22,故当n2时,ana22(n2)2n2.所以a5的值为8.(2)由题设知,当kM3,4且nk时,SnkSnk2Sn2Sk且Sn1kSn1k2Sn12Sk,两式相减得an1kan1k2an1,即an1kan1an1an1k,所以当n8时,an6,an3,an,an3,an6成等差数列,且an6,an2,an2,an6也成等差数列从而当n8时,2anan3an3an6an6,(*)且an6an6an2an2.所以当n8时,2anan2an2,即an2a

    12、nanan2.于是当n9时,an3,an1,an1,an3成等差数列,从而an3an3an1an1,故由(*)式知2anan1an1,即an1ananan1.当n9时,设danan1.当2m8时,m68,从而由(*)式知2am6amam12,故2am7am1am13.从而2(am7am6)am1am(am13am12),于是am1am2ddd.因此,an1and对任意n2都成立又由SnkSnk2Sn2Sk(k3,4)可知,(SnkSn)(SnSnk)2Sk,故9d2S3且16d2S4.解得a4d,从而a2d,a3d,又由S3da1a2a3,故a1.因此,数列an为等差数列,由a11知d2,所以

    13、数列an的通项公式为an2n1.探究提高此类问题看似简单,实际复杂,思维量和计算量较大,难度较高【训练1】 (2022江苏卷)已知各项均为正数的两个数列an和bn满足:an1,nN*.(1)设bn11,nN*,求证:数列是等差数列;(2)设bn1,nN*,且an是等比数列,求a1和b1的值(1)证明由题设知an1,所以,从而1(nN*),所以数列是以1为公差的等差数列(2)解因为an0,bn0,所以ab(anbn)2,从而1an1.(*)设等比数列an的公比为q,由an0知q0.下证q1.若q1,则a1a2,故当nlogq时,an1a1qn,与(*)矛盾;若0q1,则a1a21,故当nlogq

    14、时,an1a1qn1,与(*)矛盾综上,q1,故ana1(nN*),所以1a1.又bn1bn(nN*),所以bn是公比为的等比数列若a1,则1,于是b1b2b3.又由a1得bn(nN*),所以b1,b2,b3中至少有两项相同,矛盾,所以a1,从而bn.所以a1b1.热点二有关数列中证明的综合问题【例2】 如果无穷数列an满足下列条件:an1;存在实数M,使得anM,其中nN*,那么我们称数列an为数列(1)设数列bn的通项为bn5n2n,且是数列,求M的取值范围;(2)设cn是各项为正数的等比数列,Sn是其前n项和,c3,S3,证明:数列Sn是数列;(3)设数列dn是各项均为正整数的数列,求证

    15、:dndn1.(1)解bn1bn52n,当n3,bn1bn0,故数列bn单调递减;当n1,2时,bn1bn0,即b1b2b3,则数列bn中的最大项是b37,所以M7.(2)证明cn是各项为正数的等比数列,Sn是其前n项和,c3,S3,设其公比为q0,c3.整理得6q2q10,解得q,q(舍去)c11,cn,Sn22,对任意的nN*,有22Sn1,且Sn2,故Sn是数列(3)证明假设存在正整数k使得dkdk1成立,有数列dn的各项均为正整数,可得dkdk11,即dk1dk1.因为dk1,所以dk22dk1dk2(dk1)dkdk2,由dk22dk1dk及dkdk1得dk22dk1dk1dk1,故

    16、dk2dk11.因为dk2,所以dk32dk2dk12(dk11)dk1dk12dk3,由此类推,可得dkmdkm(mN*)又存在M,使dkM,mM,使dkm0,这与数列dn的各项均为正数矛盾,所以假设不成立,即对任意nN*,都有dkdk1成立探究提高不等式证明是数列问题中的常见题型,一般方法是利用不等式证明的常规方法,如综合法、分析法等直接证明方法,也可以应用反证法等间接证明方法【训练2】 (2022江苏卷)设数列an的前n项和为Sn.若对任意的正整数n,总存在正整数m,使得Snam,则称an是“H数列”(1)若数列an的前n项和Sn2n(nN*),证明:an是“H数列”;(2)设an是等差

    17、数列,其首项a11,公差d0.若an是“H数列”,求d的值;(3)证明:对任意的等差数列an,总存在两个“H数列”bn和cn,使得anbncn(nN*)成立(1)证明由已知,当n1时,an1Sn1Sn2n12n2n.于是对任意的正整数n,总存在正整数mn1,使得Sn2nam.所以an是“H数列”(2)解由已知,得S22a1d2d.因为an是“H数列”,所以存在正整数m,使得S2am,即2d1(m1)d,于是(m2)d1.因为d0,所以m20,故m1.从而d1.当d1时,an2n,Sn是小于2的整数,nN*,于是对任意的正整数n,总存在正整数m2Sn2,使得Sn2mam,所以an是“H数列”因此

    18、d的值为1.(3)证明设等差数列an的公差为d,则ana1(n1)dna1(n1)(da1)(nN*)令bnna1,cn(n1)(da1),则anbncn(nN*)下证bn是“H”“数列”设bn的前n项和为Tn,则Tna1(nN*),于是对任意的正整数n,总存在正整数m,使得Tnbm,所以bn是“H数列”同理可证cn也是“H数列”所以,对任意的等差数列an,总存在两个“H数列”bn和cn,使得anbncn(nN*)成立热点三数列中的探索性问题【例3】 (2022泰州期末)设数列an的前n项积为Tn,已知对n,mN*,当nm时,总有Tnmq(nm)m(q0是常数)(1)求证:数列an是等比数列;

    19、(2)设正整数k,m,n(kmn)成等差数列,试比较TnTk和(Tm)2的大小,并说明理由;(3)探究:命题p:“对n,mN*,当nm时,总有Tnmq(nm)m(q0是常数)”是命题t:“数列an是公比为q(q0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由(1)证明设m1,则有Tn1qn1,因为Ti0(iN*),所以有a1qn1,即ana1qn1,所以当n2时q,所以数列an是等比数列(2)解当q1时,ana1(nN*),所以Tna,所以TnTkaaaaT,当q1时,ana1qn1,Tna1a2anaq12(n1)aq,所以TnTkaqaqaq,Taqm(m1)因为nk2m

    20、且kmn,所以aa,mmm2m,所以若q1,则TmTkT;若q1,则TmTkT.(3)解由(1)知,充分性成立;必要性:若数列an成等比数列,则ana1qn1,所以当q1时,Tna,则aqa,Tnmq(nm)maq(nm)maa.所以,“对n,mN*,当nm时总有Tnmq(nm)m成立;同理可证当q1时也成立所以命题p是命题t的充要条件探究提高数列中的比较大小与其它比较大小的方法类似,也是差比法或商比法另外探索充要条件要从充分性、必要性两个方面判断与寻找【训练3】 (2022徐州质检)已知数列an,bn满足a13,anbn2,bn1an,nN*.(1)求证:数列是等差数列,并求数列bn的通项公

    21、式;(2)设数列cn满足cn2an5,对于给定的正整数p,是否存在正整数q,r(pqr),使得,成等差数列?若存在,试用p表示q,r;若不存在,请说明理由(1)证明因为anbn2,所以an,则bn1anbn22,所以,又a13,所以b1,故是首项为,公差为的等差数列,即(n1),所以bn.(2)解由(1)知ann2,所以cn2an52n1.当p1时,cpc11,cq2q1,cr2r1,若,成等差数列,则1,(*)因为pqr,所以q2,r3,1,11,所以(*)式不成立当p2时,若,成等差数列,则,所以,即2r1,所以r,欲满足题设条件,只需q2p1,此时r4p25p2,因为p2,所以q2p1p

    22、,rq4p27p34(p1)2p10,即rq.综上所述,当p1时,不存在q,r满足题设条件;当p2时,存在q2p1,r4p25p2,满足题设条件.1数列与不等式综合问题(1)如果是证明不等式,常转化为数列和的最值问题,同时要注意比较法、放缩法、基本不等式的应用;(2)如果是解不等式,注意因式分解的应用2数列与函数的综合问题(1)函数条件的转化:直接利用函数与数列的对应关系,把函数解析式中的自变量x换为n即可(2)数列向函数的转化:可将数列中的问题转化为函数问题,但要注意函数定义域3数列中的探索性问题处理探索性问题的一般方法是:假设题中的数学对象存在或结论成立或其中的一部分结论成立,然后在这个前

    23、提下进行逻辑推理若由此导出矛盾,则否定假设,否则,给出肯定结论,其中反证法在解题中起着重要的作用还可以根据已知条件建立恒等式,利用等式恒成立的条件求解一、填空题1(2022全国卷)设Sn是数列an的前n项和,且a11,an1SnSn1,则Sn_解析由题意,得S1a11,又由an1SnSn1,得Sn1SnSnSn1,所以Sn0,所以1,即1,故数列是以1为首项,1为公差的等差数列,得1(n1)n,所以Sn.答案2数列an的通项公式an,若an的前n项和为24,则n为_解析an( ),前n项和Sn(1)()() 124,故n624.答案6243(2022江苏卷改编)各项均为正数的等比数列an满足a

    24、1a74,a68,若函数f(x)a1xa2x2a3x3a10x10的导数为f(x),则f_解析因为各项均为正数的等比数列an满足a1a74,a68,所以a42,q2,故an2n3,又f(x)a12a2x3a3x210a10x9,所以f22222322102222.答案4在等差数列an中,a1142,d2,从第一项起,每隔两项取出一项,构成新的数列bn,则此数列的前n项和Sn取得最大值时n的值是_解析因为从第一项起,每隔两项取出一项,构成数列bn,所以新数列的首项为b1a1142,公差为d236,则bn142(n1)(6)令bn0,解得n24,因为nN*,所以数列bn的前24项都为正数项,从25

    25、项开始为负数项因此新数列bn的前24项和取得最大值答案245在正项数列an中,a12,an12an35n,则数列an的通项公式为_解析在递推公式an12an35n的两边同时除以5n1,得,令bn,则式变为bn1bn,即bn11(bn1),所以数列bn1是等比数列,其首项为b111,公比为.所以bn1,即bn1,故an5n32n1.答案an5n32n16(2022苏、锡、常、镇模拟)已知各项都为正的等比数列an满足a7a62a5,存在两项am,an使得 4a1,则的最小值为_解析由a7a62a5,得a1q6a1q52a1q4,整理有q2q20,解得q2或q1(与条件中等比数列的各项都为正矛盾,舍

    26、去),又由 4a1,得aman16a,即a2mn216a,即有mn24,亦即mn6,那么(mn),当且仅当,mn6,即n2m4时取得最小值.答案7(2022南通调研)设Sn为数列an的前n项之和,若不等式aa对任何等差数列an及任何正整数n恒成立,则的最大值为_解析a10时,不等式恒成立;当a10时,将ana1(n1)d,Snna1代入上式,并化简得:,所以,即max.答案8(2022南京、盐城模拟)已知等比数列an的首项为,公比为,其前n项和为Sn,若ASnB对nN*恒成立,则BA的最小值为_解析依题意得Sn1,当n为奇数时,Sn1;当n为偶数时,Sn1.由函数yx在(0,)上是增函数得Sn

    27、的取值范围是,因此有A,B,BA,即BA的最小值是.答案二、解答题9数列an满足an2an12n1(nN*,n2),a327.(1)求a1,a2的值;(2)是否存在一个实数t,使得bn(ant)(nN*),且数列bn为等差数列?若存在,求出实数t;若不存在,请说明理由;(3)求数列an的前n项和Sn.解(1)由a327,得272a2231,a29,92a1221,a12.(2)假设存在实数t,使得bn为等差数列,则2bnbn1bn1,(n2且nN*)2(ant)(an1t)(an1t),4an4an1an1t,4an42an2n11t,t1.即存在实数t1,使得bn为等差数列(3)由(1),(

    28、2)得b1,b2,bnn,an2n1(2n1)2n11,Sn(3201)(5211)(7221)(2n1)2n11352722(2n1)2n1n,2Sn32522723(2n1)2n2n,由得Sn32222222322n1(2n1)2nn12(2n1)2nn(12n)2nn1,Sn(2n1)2nn1.10(2022江苏卷)设an是首项为a,公差为d的等差数列(d0),Sn是其前n项的和记bn,nN*,其中c为实数(1)若c0,且b1,b2,b4成等比数列,证明:Snkn2Sk(k,nN*);(2)若bn是等差数列,证明:c0.证明由题设,Snnad.(1)由c0,得bnad.又b1,b2,b4

    29、成等比数列,所以bb1b4,即a,化简得d22ad0.因为d0,所以d2a.因此,对于所有的mN*,有Smm2a.从而对于所有的k,nN*,有Snk(nk)2an2k2an2Sk.(2)设数列bn的公差为d1,则bnb1(n1)d1,即b1(n1)d1,nN*,代入Sn的表达式,整理得,对于所有的nN*,有n3(b1d1ad)n2cd1nc(d1b1)令Ad1d,Bb1d1ad,Dc(d1b1),则对于所有的nN*,有An3Bn2cd1nD.(*)在(*)式中分别取n1,2,3,4,得ABcd18A4B2cd127A9B3cd164A16B4cd1,从而有由,得A0,cd15B,代入方程,得B

    30、0,从而cd10.即d1d0,b1d1ad0,cd10.若d10,则由d1d0,得d0,与题设矛盾,所以d10.又cd10,所以c0.11(2022南京、盐城模拟)已知数列an满足a1a(a0,aN*),a1a2anpan10(p0,p1,nN*)(1)求数列an的通项公式an;(2)若对每一个正整数k,若将ak1,ak2,ak3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为dk.求p的值及对应的数列dk记Sk为数列dk的前k项和,问是否存在a,使得Sk30对任意正整数k恒成立?若存在,求出a的最大值;若不存在,请说明理由解(1)因为a1a2anpan10,所以n2时,a1a2an1

    31、pan0,两式相减,得(n2),故数列an从第二项起是公比为的等比数列,又当n1时,a1pa20,解得a2,从而an(2)由(1)得ak1,ak2,ak3,若ak1为等差中项,则2ak1ak2ak3,即1或2,解得p;此时ak13a(2)k1,ak23a(2)k,所以dk|ak1ak2|9a2k1,若ak2为等差中项,则2ak2ak1ak3,即1,此时无解;若ak3为等差中项,则2ak3ak1ak2,即1或,解得p,此时ak1,ak3,所以dk|ak1ak3|,综上所述,p,dk9a2k1或p,dk.当p时,Sk9a(2k1)则由Sk30,得a,当k3时,1,所以必定有a1,所以不存在这样的最大正整数当p时,Sk,则由Sk30,得a,因为,所以a13满足Sk30恒成立;但当a14时,存在k5,使得a,即Sk30,所以此时满足题意的最大正整数a13.24

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:江苏专用2022高考数学二轮复习专题三数列考点整合理.docx
    链接地址:https://www.ketangku.com/wenku/file-300143.html
    相关资源 更多
  • 人教版数学二年级下册重点题型专项练习加答案(能力提升).docx人教版数学二年级下册重点题型专项练习加答案(能力提升).docx
  • 江苏省大港中学高三数学总复习教案:统计、极限与导数 函数的极限 WORD版含解析.doc江苏省大港中学高三数学总复习教案:统计、极限与导数 函数的极限 WORD版含解析.doc
  • 江苏省大港中学高三数学总复习教案:统计、极限与导数 函数极限的运算法则 WORD版含解析.doc江苏省大港中学高三数学总复习教案:统计、极限与导数 函数极限的运算法则 WORD版含解析.doc
  • 《新课标版》2014届高三下学期第六次月考 数学文 WORD版含答案.doc《新课标版》2014届高三下学期第六次月考 数学文 WORD版含答案.doc
  • 人教版数学二年级下册重点题型专项练习加答案(考点梳理).docx人教版数学二年级下册重点题型专项练习加答案(考点梳理).docx
  • 江苏省大港中学高三数学总复习教案:直线和圆的方程 直线方程的点斜式、斜截式、两点式和截距式2 WORD版.doc江苏省大港中学高三数学总复习教案:直线和圆的方程 直线方程的点斜式、斜截式、两点式和截距式2 WORD版.doc
  • 人教版数学二年级下册重点题型专项练习加答案(网校专用).docx人教版数学二年级下册重点题型专项练习加答案(网校专用).docx
  • 江苏省大港中学高三数学总复习教案:直线和圆的方程 圆的一般方程 WORD版.doc江苏省大港中学高三数学总复习教案:直线和圆的方程 圆的一般方程 WORD版.doc
  • 人教版数学二年级下册重点题型专项练习加答案(综合题).docx人教版数学二年级下册重点题型专项练习加答案(综合题).docx
  • 江苏省大港中学高三数学总复习教案:直线和圆的方程 两条直线的交点 WORD版.doc江苏省大港中学高三数学总复习教案:直线和圆的方程 两条直线的交点 WORD版.doc
  • 江苏省大港中学高三数学总复习教案:直线和圆的方程 两条直线所成的角 WORD版.doc江苏省大港中学高三数学总复习教案:直线和圆的方程 两条直线所成的角 WORD版.doc
  • 人教版数学二年级下册重点题型专项练习加答案(精选题).docx人教版数学二年级下册重点题型专项练习加答案(精选题).docx
  • 《新课标版》2014届高三下学期第一次月考 数学文 WORD版含答案.doc《新课标版》2014届高三下学期第一次月考 数学文 WORD版含答案.doc
  • 江苏省大港中学高三数学总复习教案:直线、平面、简单几何体 直线和平复习(四) WORD版含解析.doc江苏省大港中学高三数学总复习教案:直线、平面、简单几何体 直线和平复习(四) WORD版含解析.doc
  • 人教版数学二年级下册重点题型专项练习加答案(精练).docx人教版数学二年级下册重点题型专项练习加答案(精练).docx
  • 《新课标版》2014届高三上学期第六次月考 数学理 WORD版含答案.doc《新课标版》2014届高三上学期第六次月考 数学理 WORD版含答案.doc
  • 江苏省大港中学高三数学总复习教案:直线、平面、简单几何体 平面的基本性质(二) WORD版含解析.doc江苏省大港中学高三数学总复习教案:直线、平面、简单几何体 平面的基本性质(二) WORD版含解析.doc
  • 人教版数学二年级下册重点题型专项练习加答案(精品).docx人教版数学二年级下册重点题型专项练习加答案(精品).docx
  • 江苏省大港中学高三数学总复习教案:直线、平面、简单几何体 二面角 WORD版含解析.doc江苏省大港中学高三数学总复习教案:直线、平面、简单几何体 二面角 WORD版含解析.doc
  • 人教版数学二年级下册重点题型专项练习加答案(突破训练).docx人教版数学二年级下册重点题型专项练习加答案(突破训练).docx
  • 《新课标版》2013-2014学年高二下学期第四次月考 数学理 WORD版含答案.doc《新课标版》2013-2014学年高二下学期第四次月考 数学理 WORD版含答案.doc
  • 江苏省大港中学高三数学总复习教案:直线、平面、简单几何体 两个平面平行的判定和性质(二) WORD版含解析.doc江苏省大港中学高三数学总复习教案:直线、平面、简单几何体 两个平面平行的判定和性质(二) WORD版含解析.doc
  • 人教版数学二年级下册重点题型专项练习加答案(研优卷).docx人教版数学二年级下册重点题型专项练习加答案(研优卷).docx
  • 江苏省大港中学高三数学总复习教案:直线、平面、简单几何体 三垂线定理(二) WORD版含解析.doc江苏省大港中学高三数学总复习教案:直线、平面、简单几何体 三垂线定理(二) WORD版含解析.doc
  • 人教版数学二年级下册重点题型专项练习加答案(满分必刷).docx人教版数学二年级下册重点题型专项练习加答案(满分必刷).docx
  • 人教版数学二年级下册重点题型专项练习加答案(模拟题).docx人教版数学二年级下册重点题型专项练习加答案(模拟题).docx
  • 江苏省大港中学高三数学总复习教案:直线、平面、简单几何体 三垂线定理(一) WORD版含解析.doc江苏省大港中学高三数学总复习教案:直线、平面、简单几何体 三垂线定理(一) WORD版含解析.doc
  • 人教版数学二年级下册重点题型专项练习加答案(有一套).docx人教版数学二年级下册重点题型专项练习加答案(有一套).docx
  • 江苏省大港中学高三数学总复习教案:平面向量 解斜三角形 WORD版含解析.doc江苏省大港中学高三数学总复习教案:平面向量 解斜三角形 WORD版含解析.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1