2023年新教材高考数学 微专题专练17(含解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023年新教材高考数学 微专题专练17含解析 2023 新教材 高考 数学 专题 17 解析
- 资源描述:
-
1、专练17函数、导数及其应用综合检测基础强化一、选择题1函数f(x)x是()A奇函数,且值域为(0,)B奇函数,且值域为RC偶函数,且值域为(0,)D偶函数,且值域为R2若直线xa(a0)分别与曲线y2x1,yxlnx相交于A,B两点,则|AB|的最小值为()A1B2CD3已知a0.2,blog2,ccos2,则()AcbaBbcaCcabDac0恒成立,且f()1,则使x2f(x)2成立的实数x的集合为()A(,)(,)B(,)C(,)D(,)72022全国统一考试模拟演练已知a5且ae55ea,b4且be44eb,c3且ce33ec,则()AcbaBbcaCacbDabc82020天津卷已知
2、函数f(x)若函数g(x)f(x)|kx22x|(kR)恰有4个零点,则k的取值范围是()A.(2,)B(0,2)C(,0)(0,2)D(,0)(2,)9(多选)2022山东菏泽期中已知函数yf(x)在R上可导且f(0)2,其导函数f(x)满足0.若函数g(x)满足exg(x)f(x),则下列结论正确的是()A函数g(x)在(2,)上单调递增Bx2是函数g(x)的极小值点Cx0时,不等式f(x)2ex恒成立D函数g(x)至多有两个零点二、填空题10已知曲线f(x)exx2,则曲线在点(0,f(0)处的切线与坐标轴围成的图形的面积为_11已知函数f(x)x3ax24在x2处取得极值,若m1,1,
3、则f(m)的最小值为_122022山东淄博实验中学期末设函数f(x).(1)当a时,f(x)的最小值是_;(2)若f(0)是f(x)的最小值,则a的取值范围是_.能力提升13若x2是函数f(x)(x2ax1)ex1的极值点,则f(x)的极小值为()A1B2e3C5e3D1142021全国新高考卷若过点(a,b)可以作曲线yex的两条切线,则()AebaBeabC0aebD0b0且a1)的极小值点和极大值点若x10),则f(x)1,当0x1时,f(x)1时,f(x)0,函数f(x)在(0,1)上单调递减,在(1,)上单调递增,当x1时,函数f(x)取得最小值,最小值为20,|AB|a1lna|a
4、1lna,其最小值为2.3A由指数函数yx在R上单调递增,可得a0.201,由对数函数ylogx在(0,)上单调递增,知0log1blog2log1,即0b1,因为2,而函数ycosx在上单调递减,所以1cosccos2cos0,即1c0,所以cb0.当f(x)0时,解得x0,)(,2;当f(x)0时,都有xf(x)2f(x)0恒成立,所以h(x)0,所以h(x)x2f(x)在(0,)上单调递增,又函数f(x)是定义在R上的奇函数,所以h(x)x2f(x)也是定义在R上的奇函数,所以h(x)x2f(x)在(,0)上单调递增又函数f(x)的定义域为R,其导函数为f(x),所以h(x)x2f(x)
5、在R上单调递增因为f()1,所以h()2f()2,所以x2f(x)2即h(x)h(),得x,故选C.7D解法一:因为a0,且.同理可得b0且,c0且.令f(x)(x0),则f(x),当0x1时,f(x)1时,f(x)0,所以f(x)在(0,1)上单调递减,在(1,)上单调递增,所以f(5)f(4)f(3).因为,所以f(5)f(a),f(4)f(b),f(3)f(c),所以f(a)f(b)f(c).又0a5,所以0a1.同理0b1,0c1,所以0abc1,故选D.解法二:因为a5且ae55ea,所以0a5,ea5,两边取对数,得lna5,即lnaln5a5,即1,同理可得,0b4,0c3,1,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2017-2018学年高中语文人教版选修《先秦诸子选读》课件:第2单元 7、仁义礼智我固有之 .ppt
