《优选整合》人教A版高中数学 必修五 1-2-1应用举例 距离问题学案 .doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优选整合 优选整合人教A版高中数学 必修五 1-2-1应用举例 距离问题学案 优选 整合 人教 高中数学 必修 应用 举例 距离 问题
- 资源描述:
-
1、1.2应用举例测量距离 学习目标 能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题 学习过程 一、课前准备复习1:在ABC中,C60,ab,c2,则A为 . 复习2:在ABC中,sinA,判断三角形的形状.二、新课导学 典型例题例1. 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,BAC=,ACB=. 求A、B两点的距离(精确到0.1m). 提问1:ABC中,根据已知的边和对应角,运用哪个定理比较适当?提问2:运用该定理解题还需要那些边和角呢?分析:这是一道关于测量从一个可到达的点到一个不可到达的点之
2、间的距离的问题题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边. 新知1:基线在测量上,根据测量需要适当确定的 叫基线. 例2. 如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法. 分析:这是例1的变式题,研究的是两个 的点之间的距离测量问题. 首先需要构造三角形,所以需要确定C、D两点. 根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出AB的距离. 变式:若在河岸选取相距40米的C、D两点,测得BCA=60,ACD=30,CDB
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
