《全程复习方略》2014年人教A版数学理(福建用)课时作业:第八章 第十节圆锥曲线的综合问题.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全程复习方略
- 资源描述:
-
1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(五十九)一、选择题1.过抛物线y=2x2的焦点的直线与抛物线交于A(x1,y1),B(x2,y2),则x1x2=( )(A)-2(B)(C)-4(D)2.(2013郑州模拟)设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( )(A),(B)2,2(C)1,1(D)4,43.若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴的最小值为( )(A)1(B)(C)2(D)4.(2013邢台模拟)
2、若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为( )(A)2(B)3(C)6(D)85.(2013武汉模拟)已知抛物线方程为y2=4x,直线l的方程为x-y+4=0,在抛物线上有一动点P到y轴的距离为d1,P到直线l的距离为d2,则d1+d2的最小值为( )(A)(B) +1(C) -2(D) -16.(能力挑战题)若已知中心在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,PF1F2是以PF1为底边的等腰三角形若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1e2的取值范围是( )(A)(0,+)(B)(,
3、+)(C)(,+)(D)(,+)二、填空题7.(2013重庆模拟)过椭圆C:(ab0)的左顶点A且斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为右焦点F,若,则椭圆离心率的取值范围为_.8.(2013长春模拟)设连接双曲线与(a0,b0)的4个顶点的四边形面积为S1,连接其4个焦点的四边形面积为S2,则的最大值为_.9.过抛物线y2=2px(p0)上一定点P(x0,y0)(y00)作两直线分别交抛物线于A(x1,y1),B(x2,y2),当PA与PB的斜率存在且倾斜角互补时,则的值为_.三、解答题10.如图,已知椭圆C:(a1)的上顶点为A,离心率为,若不过点A的动直线l与椭圆
4、C相交于P,Q两点,且.(1)求椭圆C的方程.(2)求证:直线l过定点,并求出该定点N的坐标.11.(2013漳州模拟)已知椭圆C:(ab0)的短轴长为2,且与抛物线有共同的焦点,椭圆C的左顶点为A,右顶点为B,点P是椭圆C上位于x轴上方的动点,直线AP,BP与直线y=3分别交于G,H两点.(1)求椭圆C的方程.(2)求线段GH的长度的最小值.(3)在线段GH的长度取得最小值时,椭圆C上是否存在一点T,使得TPA的面积为1,若存在,求出点T的坐标,若不存在,说明理由.12.(能力挑战题)给定椭圆C:(ab0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴
5、上的一个端点到F的距离为.(1)求椭圆C的方程和其“准圆”的方程.(2)点P是椭圆C的“准圆” 上的一个动点,过动点P作直线l1,l2使得l1,l2与椭圆C都只有一个交点,且l1,l2分别交其“准圆”于点M,N.当P为“准圆”与y轴正半轴的交点时,求l1,l2的方程;求证:|MN|为定值.答案解析1.【解析】选D.由y=2x2得,其焦点坐标为F(0,),取直线y=,则其与y=2x2交于A(-,),B(, ),x1x2=(-)()-.【方法技巧】与动直线相关值的求解技巧解决动直线与圆锥曲线相交的有关值的选择题、填空题,一般取其特殊位置探索其值即可.2.【解析】选C.设直线方程为y=k(x+2),
6、与抛物线联立方程组,整理得ky2-8y+16k=0.当k=0时,直线与抛物线有一个交点当k0时,由=64-64k20,解得-1k1且k0.综上-1k1.3.【解析】选D.设椭圆长半轴长为a,短半轴长为b,a2-b2=c2,由题意,2cb1,bc=1,b2+c2=a22bc=2.a.长轴的最小值为2.4.【解析】选C,设P(x0,y0),则即,又F(-1,0),又x0-2,2,2,6,所以max=6.5.【思路点拨】画出图象,通过图象可知点P到y轴的距离等于点P到焦点F的距离减1,过焦点F作直线l的垂线,此时d1+d2最小,根据抛物线方程求得F的坐标,进而利用点到直线的距离公式求得d1+d2的最
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-476556.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
