《创新方案 一轮回扣》2015高考(北师大版)数学(理)复习配套试题:数列的综合问题(知识回扣 热点突破 能力提升).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新方案 一轮回扣
- 资源描述:
-
1、高考资源网() 您身边的高考专家第五节数列的综合问题【考纲下载】能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题1数列综合应用题的解题步骤(1)审题弄清题意,分析涉及哪些数学内容,在每个数学内容中,各是什么问题(2)分解把整个大题分解成几个小题或几个“步骤”,每个小题或每个“步骤”分别是数列问题、函数问题、解析几何问题、不等式问题等(3)求解分别求解这些小题或这些“步骤”,从而得到整个问题的解答2常见的数列模型(1)等差数列模型:通过读题分析,由题意抽象出等差数列,利用等差数列有关知识解决问题(2)等比数列模型:通过读题分析,由题意抽象出等比数列,利用等比数列有关
2、知识解决问题(3)递推公式模型:通过读题分析,由题意把所给条件用数列递推式表达出来,然后通过分析递推关系式求解1设本金为a,每期利率为r,存期为n,若按单利计算,本利和是多少?此模型是等差数列模型还是等比数列模型?提示:本利和为a(1rn),属等差数列模型2设本金为a,每期利率为r,存期为n,若按复利计算,本利和是多少?此模型是等差数列模型还是等比数列模型?提示:本利和为a(1r)n,属等比数列模型1设an是公差不为0的等差数列,a12且a1,a3,a6成等比数列,则an的前n项和Sn()A. B. C. Dn2n解析:选A设等差数列an的公差为d.a1,a3,a6成等比数列,aa1a6,即(
3、a12d)2a1(a15d)又a12,(22d)22(25d),解之得d或d0(舍)Snna1d2n.2已知x0,y0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是()A0 B1 C2 D4解析:选Dx,a,b,y成等差数列,abxy,又x,c,d,y成等比数列,cdxy.224.当且仅当xy时取等号,所以的最小值是4.3.在如图所示的表格中,如果每格填上一个数后,每一行成等差数列,每一列成等比数列,那么xyz的值为()A1 B2 C3 D4解析:选C由题意知,第三列各数成等比数列,故x1;第一行第五个数为6,第二行第五个数为3,故z;第一行第四个数为5,第二行第四个数为,
4、故y,从而xyz3.4已知正项等差数列an满足:an1an1a(n2),等比数列bn满足:bn1bn12bn(n2),则log2(a2b2)_.解析:由题意可知an1an12ana,解得an2(n2)(由于数列an每项都是正数,故an0舍去),又bn1bn1b2bn(n2),所以bn2(n2),所以log2(a2b2)log242.答案:25已知数列an的前n项和为Sn,对任意nN*都有Snan,若1Sk9(kN*),则k的值为_解析:由Snan,得当n1时,S1a1a1,则a11.当n2时,Sn(SnSn1),即Sn2Sn11.令Snp2(Sn1p),得Sn2Sn13p,可知p.故数列是以为
5、首项,2为公比的等比数列则Sn(2)n1,即Sn(2)n1.由1(2)k19,kN*,得k4.答案:4考点一等差、等比数列的综合问题 例1在数列an中,a11,a22,且an1(1q)anqan1(n2,q0)(1)设bnan1an(nN*),证明:bn是等比数列;(2)求数列an的通项公式;(3)若a3是a6与a9的等差中项,求q的值,并证明:此时对任意的nN*,an是an3与an6的等差中项自主解答(1)证明:由题设an1(1q)anqan1(n2),得an1anq(anan1),即bnqbn1,n2.又b1a2a11,q0,所以bn是首项为1,公比为q的等比数列(2)由(1),得a2a1
6、1,a3a2q,anan1qn2(n2)将以上各式相加,得ana11qq2qn2(n2)所以当n2时,有an上式对n1也成立,所以数列an的通项公式为an(3)由(2),得当q1时,显然a3不是a6与a9的等差中项,故q1.由a3是a6与a9的等差中项,即2a3a6a9,可得2q2q5q8,由q0,得q6q320,整理,得(q3)2q320,解得q32或q31(舍去)于是q.而an1,an31,an61,所以an3an6222222an.所以对任意的nN*,an是an3与an6的等差中项【方法规律】解决等差、等比数列的综合问题的方法对于等差、等比数列的综合问题,应重点分析等差、等比数列的通项,
7、前n项和以及等差、等比数列项之间的关系,往往用到转化与化归的思想方法已知等差数列an的首项a11,公差d0,且第2项、第5项、第14项分别是等比数列bn的第2项、第3项、第4项(1)求数列an与bn的通项公式;(2)设数列cn对nN*均有an1成立,求c1c2c3c2 013.解:(1)由已知有a21d,a514d,a14113d,(14d)2(1d)(113d),解得d2(d0)an1(n1)22n1.又b2a23,b3a59,数列bn的公比为3,bn33n23n1.(2)由an1,得当n2时,an.两式相减得:n2时,2bn23n1(n2)又当n1时,a2,c1c2c3c2 01333(3
8、32 013)32 013.考点二数列在实际问题中的应用 例2某工业城市按照“十二五”(2011年至2015年)期间本地区主要污染物排放总量控制要求,进行减排治污现以降低SO2的年排放量为例,原计划“十二五”期间每年的排放量都比上一年减少0.3万吨,已知该城市2011年SO2的年排放量约为9.3万吨(1)按原计划,“十二五”期间该城市共排放SO2约多少万吨?(2)该城市为响应“十八大”提出的建设“美丽中国”的号召,决定加大减排力度在2012年刚好按原计划完成减排任务的条件下,自2013年起,SO2的年排放量每年比上一年减少的百分率为p,为使2020年这一年SO2的年排放量控制在6万吨以内,求p
9、的取值范围自主解答(1)设“十二五”期间,该城市共排放SO2约y万吨,依题意,2011年至2015年SO2的年排放量构成首项为9.3,公差为0.3的等差数列,所以y59.3(0.3)43.5(万吨)所以按原计划“十二五”期间该城市共排放SO2约43.5万吨(2)由已知得, 2012年的SO2年排放量为9.30.39(万吨),所以2012年至2020年SO2的年排放量构成首项为9,公比为1p的等比数列由题意得9(1p)86,由于0p1,所以1p ,所以1p4.95%.所以SO2的年排放量每年减少的百分率p的取值范围为(4.95%,1)【方法规律】解决数列应用题应注意的问题解决数列应用问题,要明确
10、问题属于哪一种类型,即明确是等差数列问题还是等比数列问题,是求an还是Sn,特别是要弄清项数某公司一下属企业从事某种高科技产品的生产该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产设第n年年底企业上缴资金后的剩余资金为an万元(1)用d表示a1,a2,并写出an1与an的关系式;(2)若公司希望经过m(m3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d的值(用m表示)解:(1)由题意得a12 000(150%)d3 000d,a2
11、a1(150%)da1d4 500d.an1an(150%)dand.(2) 由(1)得anan1d(3) d2an2ddn1a1d.整理得ann1(3 000d)2dn1(3 0003d)2d.由题意,am4 000,即m1(3 0003d)2d4 000.解得d.故该企业每年上缴资金d的值为时,经过m(m3)年企业的剩余资金为4 000万元高频考点考点三 数列与函数、不等式的综合问题1数列与函数、 不等式的综合问题是每年高考的重点,多为解答题,难度偏大,属中高档题2高考对数列与函数、不等式的综合问题的考查常有以下两个命题角度:(1)以数列为载体,考查不等式的恒成立问题;(2)考查与数列问题
12、有关的不等式的证明问题例3(2013江西高考)正项数列an的前n项和Sn满足:S(n2n1)Sn(n2n)0.(1)求数列an的通项公式an;(2)令bn,数列bn的前n项和为Tn.证明:对于任意的nN*,都有Tn0,Snn2n.于是a1S12,n2时,anSnSn1n2n(n1)2(n1)2n.综上,数列an的通项公式为an2n.(2)证明:由于an2n,故bn.Tn1.数列与函数、不等式的综合问题的常见类型及解题策略(1)数列与不等式的恒成立问题此类问题常构造函数,通过函数的单调性、极值等解决问题(2)与数列有关的不等式证明问题解决此类问题要灵活选择不等式的证明方法,如比较法、综合法、分析
13、法、放缩法等1已知函数f(x)ln xx,数列an满足a1,an1.(1)求证:f(x)1;(2)证明数列为等差数列,并求数列an的通项公式;(3)求证不等式a1a2annln 2ln(n2)证明:(1)令g(x)f(x)1ln xx1,g(x)1,当0x0,当x1时g(x)1时,f(x)10,即ln xx1,令x1,得ln11,lnlnln,ln(n2)ln 2,nnln 2ln(n2),a1a2ancn成立解题指导处理第(2)问中的cn1cn恒成立问题,可通过构造函数将问题转化为函数的最值问题,再来研究所构造的函数的最值解(1)由已知得Sn2Sn1(Sn1Sn)1,所以an2an11(n1
14、)又a2a11,所以数列an是以a12为首项,1为公差的等差数列所以ann1.因为bn14bn6,即bn124(bn2),又b12a124,所以数列b22是以4为首项,4为公比的等比数列所以bn4n2.(2)因为ann1,bn4n2,所以cn4n(1)n12n1.要使cn1cn成立,需cn1cn4n14n(1)n2n2(1)n12n10恒成立,化简得34n3(1)n12n10恒成立,即(1)n12n1恒成立,当n为奇数时,即2n1恒成立,当且仅当n1时,2n1有最小值1,所以2n1恒成立,当且仅当n2时,2n1有最大值2,所以2,即2cn成立名师点评对于数列问题,一般要先求出数列的通项,不是等
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-480062.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
