江苏省南通市如皋中学2019-2020学年高一数学下学期6月阶段考试试题(创新班含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 南通市 如皋 中学 2019 2020 学年 数学 下学 阶段 考试 试题 创新 解析
- 资源描述:
-
1、江苏省南通市如皋中学2019-2020学年高一数学下学期6月阶段考试试题(创新班,含解析)一、选择题:(本题共有12小题,每小题5分,共60分)1.椭圆的焦点的坐标为( )A. B. C. D. 【答案】B【解析】【分析】根据椭圆的方程,求出,即可得出焦点坐标.【详解】因为椭圆方程为,所以,且焦点在轴上,所以焦点坐标为:.故选:B.【点睛】本题主要考查求椭圆的焦点坐标,熟记椭圆的简单性质即可,属于基础题型.2.某学校有高一、高二、高三三个年级,已知高一、高二、高三的学生数之比为,现用分层抽样抽取一个容量为的样本,从高一学生中用简单随机抽样抽取样本时,学生甲被抽到的概率为,则该学校学生的总数为(
2、 )A. B. C. D. 【答案】B【解析】【分析】求出整个抽样过程中,每个学生被抽到的概率为,结合样本容量为可求得该学校学生的总数.【详解】从高一学生中用简单随机抽样抽取样本时,学生甲被抽到的概率为,所以,在整个抽样过程中,每个学生被抽到的概率为,所以,从该学校中抽取一个容量为的样本时,则该学校学生的总数为.故选:B.【点睛】本题考查利用分层抽样计算总容量,考查计算能力,属于基础题.3.已知数据的平均值为2,方差为1,则数据的方差是( )A. 小于1B. 1C. 大于1D. 无法确定【答案】C【解析】【分析】根据数据的平均值和方差公式计算比较可得答案.【详解】因为数据的平均值为2,所以,所
3、以,所以的平均值为2,数据平均值为2,方差为1所以,所以,所以数据的方差是,故选:C.【点睛】本题考查了数据的平均值和方差公式,属于基础题.4.若抛物线上的一点M到坐标原点O的距离为,则点M到该抛物线焦点的距离为( )A. 3B. C. 2D. 1【答案】B【解析】【分析】设,则,解得,故,计算得到答案.【详解】设,M到坐标原点O的距离为,解得,故.点M到该抛物线焦点距离为.故选:.【点睛】本题考查了抛物线中的距离问题,意在考查学生的计算能力和转化能力.5.假设在元旦假期期间,甲地降雨概率是,乙地降雨概率是,且两地是否降雨相互之间没有影响,则在该时段两地中恰有一个地区降雨的概率为( )A. B
4、. C. D. 0.56【答案】B【解析】【分析】根据甲、乙两地恰有一个地方下雨,包括甲地下雨,乙地不下雨和甲地不下雨,乙地下雨两类情况,再根据相互独立事件同时发生的概率公式得到结果;【详解】解:甲、乙两地恰有一个地方下雨的概率:故选:B【点睛】考查运用概率知识解决实际问题的能力,相互独立事件是指,两事件发生的概率互不影响,注意应用相互独立事件同时发生的概率公式,属于基础题6.近年来,随着“一带一路”倡议的推进,中国与沿线国家旅游合作越来越密切,中国到“一带一路”沿线国家的游客人也越来越多,如图是2013-2018年中国到“一带一路”沿线国家的游客人次情况,则下列说法正确的是()2013-20
5、18年中国到“一带一路”沿线国家的游客人次逐年增加2013-2018年这6年中,2016年中国到“一带一路”沿线国家的游客人次增幅最小2016-2018年这3年中,中国到“一带一路”沿线国家的游客人次每年的增幅基本持平A. B. C. D. 【答案】A【解析】【分析】根据图象上的数据,对三种说法逐个分析可得答案.【详解】观察图像可知说法 正确;观察图像可知2014年增加45万人,2016年增加350万人,故说法 不正确,排除,;观察图像可知2017年增加320万人,2018年增加259万人,2016-2018年这3年中,每年增加的人次相差不大,基本持平,故说法 正确.故选:A.【点睛】本题考查
6、了对统计图表的理解和应用,属于基础题.7.已知双曲线的右焦点为,为双曲线左支上一点,点,则周长的最小值为( )A. B. C. D. 【答案】B【解析】曲线右焦点为,周长 要使周长最小,只需 最小,如图:当三点共线时取到,故l=2|AF|+2a= 故选B点睛:本题考查了双曲线的定义,两条线段之和取得最小值的转化,考查了转化思想,属于中档题.8.12件同类产品中,有10件是正品,2件是次品,从中任意抽出3件,与“抽得1件次品2件正品”互斥而不对立的事件是( )A. 抽得3件正品B. 抽得至少有1件正品C. 抽得至少有1件次品D. 抽得3件正品或2件次品1件正品【答案】A【解析】【分析】根据互斥事
7、件和对立事件的概念逐项分析可得答案.【详解】对于 , 抽得3件正品与抽得1件次品2件正品是互斥而不对立事件;对于 , 抽得至少有1件正品与抽得1件次品2件正品不是互斥事件,对于 , 抽得至少有1件次品与抽得1件次品2件正品不是互斥事件,对于 , 抽得3件正品或2件次品1件正品与抽得1件次品2件正品既是互斥也是对立事件.故选:A【点睛】本题考查了互斥事件与对立事件的概念,掌握互斥事件与对立事件的概念是答题的关键,属于基础题.9.在平面直角坐标系中,圆与圆的公共弦的长为( )A B. C. D. 【答案】C【解析】【分析】先用两圆方程相减求出公共弦所在直线方程,再求圆心到直线的距离,最后用勾股定理
8、可得【详解】解:由,得:两圆的公共弦所在的直线方程为:,圆的圆心到直线的距离为:,公共弦长为:故选:C【点睛】本题考查了圆与圆的位置关系及其判定,属中档题直线与圆的方程,两圆的公共弦长问题10.已知实数,且,函数在上单调递增,则实数的取值范围( )A. B. C. D. 【答案】B【解析】【分析】当,由指数函数的性质分析可得,当时,由导数与函数单调性的关系可得,在上恒成立,变形可得,再结合函数的单调性,分析可得,分析可得答案.【详解】根据题意,函数在上单调递增,当,若为增函数,则,当,若为增函数,必有在上恒成立,变形可得:,又由,可得在上单调递减,则,若在上恒成立,则有,若函数在上单调递增,左
9、边一段函数的最大值不能大于右边一段函数的最小值,则需有,联立可得:.故选:B.【点睛】本题主要考查函数单调性以及分段函数的应用.首先根据指数函数确定出参数的大范围,然后再利用求导进一步求出参数范围,最后根据单调性来解答临界值的大小,从而得到结论,考查了运算和推论能力,属于中档题.11.已知圆,直线,若直线上存在点,过点引圆的两条切线,使得,则实数的取值范围是( )A. B. ,C. D. )【答案】D【解析】【分析】由题意结合几何性质可知点P的轨迹方程为,则原问题转化为圆心到直线的距离小于等于半径,据此求解关于k的不等式即可求得实数k的取值范围.【详解】圆C(2,0),半径r,设P(x,y),
10、因为两切线,如下图,PAPB,由切线性质定理,知:PAAC,PBBC,PAPB,所以,四边形PACB为正方形,所以,PC2,则:,即点P的轨迹是以(2,0)为圆心,2为半径的圆.直线过定点(0,2),直线方程即,只要直线与P点的轨迹(圆)有交点即可,即大圆的圆心到直线的距离小于等于半径,即:,解得:,即实数的取值范围是).本题选择D选项.【点睛】本题主要考查直线与圆的位置关系,轨迹方程的求解与应用,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.12.若关于x的不等式e2xalnxa恒成立,则实数a的取值范围是( )A. 0,2eB. (,2eC. 0,2e2D. (,2e2【
11、答案】C【解析】【分析】讨论a0时,f(x)e2xalnx无最小值,不符题意;检验a0时显然成立;讨论a0时,求得f(x)导数和极值点m、极值和最值,解不等式求得m的范围,结合a2me2m,可得所求范围【详解】解:当a0时,f(x)e2xalnx为(0,+)的增函数(增函数+增函数=增函数),此时时,f(x),所以不符合题意;当a0时,e2xalnxa即为e2x0显然成立;当a0时,f(x)e2xalnx的导数为2e2x,由于y2e2x在(0,+)递增(增函数+增函数=增函数),设0的根为m,即有a2me2m,.当0xm时,0,f(x)单调递减;当xm时,0,f(x)单调递增,可得xm处f(x
12、)取得极小值,且为最小值e2malnm,由题意可得e2malnma,即alnma,化为m+2mlnm1,设g(m)m+2mlnm,1+2(1+lnm),所以函数在内单调递减,在单调递增.当m1时,g(1)1,当时,.可得m+2mlnm1的解为0m1,设所以函数在单调递增.则a2me2m(0,2e2,综上可得a0,2e2,故选:C【点睛】本题主要考查利用导数研究函数的单调性和最值,考查利用导数研究不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题:(本题有4小题,每小题5分,共20分.)13.不透明的口袋中有形状和大小完全相同的四个球,球的编号分别为、.若从袋中随
13、机抽取出两个球,则取出的两个球的编号之和小于的概率为_.【答案】【解析】【分析】列举出所有的基本事件,并确定事件“取出的两个球的编号之和小于”所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率.【详解】从袋中随机抽取出两个球,则所有的基本事件有:、,共种,其中,事件“取出的两个球的编号之和小于”所包含的基本事件有:、,共种,因此,所求事件的概率为.故答案为:.【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.14.如表是某厂2020年14月份用水量(单位:百吨)的一组数据月份x1234用水量y2.5344.5由散点图可知,用水量y与月份x之
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-296912.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2022三年级语文下册 第2单元 第5课 守株待兔初读感知课件 新人教版 (2).ppt
