分享
分享赚钱 收藏 举报 版权申诉 / 16

类型2021届高考数学人教版一轮创新教学案:第10章 第1讲 分类加法计数原理与分步乘法计数原理 WORD版含解析.doc

  • 上传人:a****
  • 文档编号:480516
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:16
  • 大小:339.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021届高考数学人教版一轮创新教学案:第10章 第1讲分类加法计数原理与分步乘法计数原理 WORD版含解析 20
    资源描述:

    1、第十章计数原理、概率、随机变量及其分布第1讲分类加法计数原理与分步乘法计数原理考纲解读1.理解两个计数原理(分类加法计数原理和分步乘法计数原理)(重点)2能正确区分“类”和“步”,并能利用两个计数原理解决一些简单的实际问题(难点)考向预测从近三年高考情况来看,对两个计数原理很少独立命题预测2021年高考将会综合考查两个计数原理与排列组合知识试题以客观题的形式呈现,难度不大,属中、低档题型.1.两个计数原理分类加法计数原理分步乘法计数原理条件完成一件事有几类不同的方案在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法在第n类方案中有mn种不同的方法完成一件事需要n个步骤,做第1步

    2、有m1种不同的方法,做第二步有m2种不同的方法做第n步有mn种不同的方法结论完成这件事共有Nm1m2mn种方法完成这件事共有Nm1m2mn种方法2两个计数原理的区别与联系分类加法计数原理分步乘法计数原理相同点用来计算完成一件事的方法种数不同点分类、相加分步、相乘每类方案中的每一种方法都能独立完成这件事每步依次完成才算完成这件事情(每步中的每一种方法不能独立完成这件事)注意点类类独立不重不漏步步相依缺一不可1概念辨析(1)在分类加法计数原理中,两类不同方案中的方法可以相同()(2)在分步乘法计数原理中,只有各个步骤都完成后,这件事情才算完成()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的

    3、方法是各不相同的()答案(1)(2)(3)2小题热身(1)从甲地到乙地,每天飞机有5班,高铁有10趟,动车有6趟,公共汽车有12班某人某天从甲地前往乙地,则其出行方案共有()A22种 B33种 C300种 D3600种答案B解析由分类加法计数原理,知共有51061233种出行方案(2)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有()A10种 B25种 C52种 D24种答案D解析每相邻的两层之间各有2种走法,共分4步由分步乘法计数原理,知共有24种不同的走法(3)已知集合M3,2,1,0,1,2,P(a,b)(a,bM)表示平面上的点,则P可表示坐标平面上第二象限的点的个数为()A

    4、6 B12 C24 D36答案A解析分两步:第一步确定a,由a0,知有2种方法,由分步乘法计数原理,得到第二象限上的点的个数是326.(4)如图,要让电路从A处到B处接通(只考虑每个小并联单元只有一个开关闭合的情况),可有_条不同的路径答案9解析分以下三种情况计数:第一层有326条路径;第二层有1条路径;第三层有2条路径;由分类加法计数原理,知共有6129条路径题型一分类加法计数原理的应用1已知椭圆1,若a2,4,6,8,b1,2,3,4,5,6,7,8,这样的椭圆有()A12个 B16个 C28个 D32个答案C解析解法一:若焦点在x轴上,则ab,a2时,有1个;a4时,有3个;a6时,有5

    5、个;a8时,有7个,共有135716个若焦点在y轴上,则ba,b3时,有1个;b4时,有1个;b5时,有2个;b6时,有2个;b7时,有3个,b8时,有3个共有11223312个故共有161228个解法二:椭圆中ab,而ab有4种情况,故椭圆的个数为48428.2(2019西城区一模)如图所示,玩具计数算盘的三档上各有7个算珠,现将每档算珠分为左右两部分,左侧的每个算珠表示数2,右侧的每个算珠表示数1(允许一侧无珠),记上、中、下三档的数字和分别为a,b,c.例如,图中上档的数字和a9.若a,b,c成等差数列,则不同的分珠计数法有_种答案32解析根据题意,a,b,c的取值范围都是从714共8个

    6、数字,故公差d的范围是3到3,当公差d0时,有C8种,当公差d1时,b不取7和14,有2C12种,当公差d2时,b不取7,8,13,14,有2C8种,当公差d3时,b只能取10或11,有2C4种,综上共有8128432种1分类加法计数原理的用法及要求(1)用法:应用分类加法计数原理进行计数时,需要根据完成事件的特点,将要完成一件事的方法进行“分类”计算(2)要求:各类的方法相互独立,每类中的各种方法也相互独立,用任何一类中的任何一种方法都可以单独完成这件事2使用分类加法计数原理应遵循的原则有时分类的划分标准有多个,但不论是以哪一个为标准,都应遵循“标准要明确,不重不漏”的原则提醒:对于分类类型

    7、较多,而其对立事件包含的类型较少的可用间接法求解 1三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有()A4种 B6种 C10种 D16种答案B解析分两类:甲第一次踢给乙时,满足条件的有3种方法(如图),同理,甲先传给丙时,满足条件的有3种踢法由分类加法计数原理,共有336种传递方法故选B.2(2019重庆模拟)在平面直角坐标系内,点P(a,b)的坐标满足ab,且a,b都是集合1,2,3,4,5,6)中的元素又点P到原点的距离|OP|5,则这样的点P的个数为_答案20解析依题意可知,当a1时,b5,6,2种情况;当a2时,b5,6,

    8、2种情况;当a3时,b4,5,6,3种情况;当a4时,b3,5,6,3种情况;当a5或6时,b各有5种情况由分类加法计数原理,得点P的个数为22335520.题型二分步乘法计数原理1(2019湖南师范大学附中模拟)若m,n均为非负整数,在做mn的加法时各位均不进位(例如:20191002119),则称(m,n),为“简单的”有序对,而mn称为有序对(m,n)的值,那么值为2019的“简单的”有序对的个数是()A100 B96 C60 D30答案C解析由题意可知,只要确定了m,n即可确定,则可确定一个有序数对(m,n),则对于数m,利用分步计数原理,第一位取法有3种:0,1,2;第二位取法有1种

    9、:0;第三位取法有2种:0,1;第四位取法有10种:0,1,2,3,4,5,6,7,8,9;所以值为2019的“简单的”有序对的个数是3121060.2某市汽车牌照号码可以网上自编,但规定从左到右第二个号码只能从字母G,L中选择,其他四个号码可以从09这十个数字中选择(数字可以重复),某车主从左到右第一个号码只想在1,3,5,7中选择,其他号码只想在1,3,6,8,9中选择,则供他可选的车牌号码的种数为()A21 B800 C960 D1000答案D解析分步完成从左到右第一个号码有4种选法,第二个号码有2种选法,第三个号码有5种选法,第四个号码有5种选法,第5个号码有5种选法,共有425551

    10、000种不同的选法1分步乘法计数原理的用法及要求(1)用法:应用分步乘法计数原理时,需要根据要完成事件的发生过程进行“分步”计算(2)要求:每个步骤相互依存,其中的任何一步都不能单独完成这件事,只有当各个步骤都完成,才算完成这件事2应用分步乘法计数原理的注意点(1)明确题目中所指的“完成一件事”是什么事,必须要经过几步才能完成这件事(2)解决分步问题时要合理设计步骤、顺序,使各步互不干扰,还要注意元素是否可以重复选取.工人在悬挂如图所示的一个正六边形装饰品时,需要固定六个位置上的螺丝,首先随意拧紧一个螺丝,接着拧紧距离它最远的第二个螺丝,再随意拧紧第三个螺丝,接着拧紧距离第三个螺丝最远的第四个

    11、螺丝,第五个和第六个以此类推,则不同的固定方式有_种答案48解析先随意拧一个螺丝,接着拧它对角线上的,有C种方法;再随意拧第三个螺丝,和其对角线上的,有C种方法;然后随意拧第五个螺丝,和其对角线上的,有C种方法故不同的固定方式共有CCC48种题型三两个计数原理的综合应用角度1与数字有关的问题1用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A144个 B120个 C96个 D72个答案B解析由题意可知,符合条件的五位数的万位数字是4或5.当万位数字为4时,个位数字从0,2中任选一个,共有243248个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,

    12、共有343272个偶数故符合条件的偶数共有4872120(个)角度2涂色、种植问题2(2020衡水二中检测)用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻的两个圆所涂颜色不能相同,则不同的涂色方案的种数是()A12 B24 C30 D36答案C解析按顺序涂色,第一个圆有三种选择,第二个圆有二种选择,若前三个圆用了三种颜色,则第三个圆有一种选择,后三个圆也用了三种颜色,共有321CC24(种),若前三个圆用了两种颜色,则后三个圆也用了两种颜色,所以共有326(种)综上可得不同的涂色方案的种数是30.角度3分配问题3(2020山西大学附中模拟)某医院拟派2名内科医

    13、生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有()A72种 B36种 C24种 D18种答案B解析2名内科医生,每村1名,有2种分法.3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,可分1名外科医生、2名护士和2名外科医生、1名护士若甲村有1名外科医生、2名护士,有339(种)分法,其余的分到乙村若甲村有2名外科医生、1名护士,有339(种)分法,其余的分到乙村所以总的分配方案有2(99)21836(种)1利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么(2)确

    14、定是先分类后分步,还是先分步后分类(3)弄清分步、分类的标准是什么(4)利用两个计数原理求解2与数字有关问题的解题思路一般按特殊位置由谁占领分类,每类中再分步计数,当分类较多时,也可用间接法求解见举例说明1.3涂色(种植)问题的解题关注点和关键(1)关注点:分清元素的数目,其次分清在不相邻的区域内是否可以使用同类元素(2)关键是对每个区域逐一进行分步处理见举例说明2.4分配问题的解题思路一般按分配规则总体分类,每类中再分步计数如举例说明3.提醒:对于较复杂的两个原理综合应用的问题,可恰当画出示意图或列出表格,使问题形象化、直观化,以图助解.1(2019天津模拟)如图所示的五个区域中,现有四种颜

    15、色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A24 B48 C72 D96答案C解析分两种情况:A,C不同色,先涂A有4种,C有3种,E有2种,B,D有1种,有43224(种)涂法A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有432248(种)涂法故共有244872种涂色方法2为举办校园文化节,某班推荐2名男生、3名女生参加文艺技能培训,培训项目及人数分别为:乐器1人,舞蹈2人,演唱2人,每人只参加一个项目,并且舞蹈和演唱项目必须有女生参加,则不同的推荐方案的种数为_(用数字作答)答案24解析若参加乐器培训的是女生,则各有1名男生及

    16、1名女生分别参加舞蹈和演唱培训,共有32212(种)方案;若参加乐器培训的是男生,则各有1名男生、1名女生及2名女生分别参加舞蹈和演唱培训,共有23212(种)方案,所以共有24种推荐方案3回文数是指从左到右与从右到左读都一样的正整数如22,121,3443,94249等显然2位回文数有9个:11,22,33,99.3位回文数有90个:101,111,121,191,202,999.则:(1)4位回文数有_个;(2)2n1(nN*)位回文数有_个答案(1)90(2)910n解析(1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种填法;中间两位一样,有10种填法共计91090(种)填法,

    17、即4位回文数有90个(2)根据回文数的定义,此问题也可以转化成填方格由计数原理,知共有910n种填法组基础关1集合Px,1,Qy,1,2,其中x,y1,2,3,9,且PQ.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A9 B14 C15 D21答案B解析当x2时,xy,点的个数为177.当x2时,由PQ,xy.x可从3,4,5,6,7,8,9中取,有7种方法因此满足条件的点共有7714(个)2有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则不同的监考方法有()A8种 B9种 C10种 D11种答案B解析设教1,2,3

    18、,4班的教师分别为1,2,3,4,满足题意的监考方法有共9种不同的监考方法3用两个1,一个2,一个0,可组成不同四位数的个数是()A18 B16 C12 D9答案D解析千位上是1的四位数有3216个,千位上是2的四位数有2110、2101、2011,共3个,由加法计数原理可得,可组成不同四位数的个数是639.4直线l:1中,a1,3,5,7,b2,4,6,8若l与坐标轴围成的三角形的面积不小于10,则这样的直线的条数为()A6 B7 C8 D16答案B解析l与坐标轴围成的三角形的面积为Sab10,即ab20.当a1时,不满足;当a3时,b8,即1条当a5,7时,b4,6,8,此时a的取法有2种

    19、,b的取法有3种,则直线l的条数为236.故满足条件的直线的条数为167.故选B.5已知非空集合A,B满足AB1,2,3,当A中元素个数不少于B中元素个数时,(A,B)对(当AB时,(A,B)与(B,A)不同)的个数为()A18 B16 C9 D8答案B解析若A中有一个元素,设A1,则2,3B,不符合题意;若A中有两个元素,设A1,2,则3B,B有三种取法,B3,B1,3,B2,3,此种情况下共有339;若A1,2,3,B非空,则B有7种取法,综上,共有9716种6(2019大连二模)把标号为1,2,3,4的四个小球分别放入标号为1,2,3,4的四个盒子中,每个盒子只放一个小球,则1号球不放入

    20、1号盒子的方法共有()A18种 B9种 C6种 D3种答案A解析由于1号球不放入1号盒子,则1号盒子有2、3、4号球三种选择,还剩余三个球可以任意放入2、3、4号盒子中,则2号盒子有三种选择,3号盒子还剩两种选择,4号盒子只有一种选择,根据分步计数原理可得1号球不放入1号盒子的方法有CCC118种故选A.7如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有()A24 B48C96 D120答案C解析若A,D颜色相同,先涂E有4种涂法,再涂A,D有3种涂法,再涂B有2种涂法,C只有一种涂法,共有43224种;若A,D颜色不同,先涂

    21、E有4种涂法,再涂A有3种涂法,再涂D有2种涂法,当B和D颜色相同时,C有2种涂法,当B和D颜色不同时,B,C只有1种涂法,共有432(21)72种根据分类加法计数原理可得,不同的涂色方法共有247296种8如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有_个(用数字作答)答案40解析把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8432(个)第二类,有两条公共边的三角形共有8个,由分类加法计数原理,知共有32840(个)9(2019诸暨市模拟)假如某人有壹元、贰元、伍元、拾元、贰拾元、伍拾元、壹佰元的纸币各两张,要支付贰佰壹拾玖(219)

    22、元的货款,则有_种不同的支付方式答案6解析9元的支付有两种情况,522或者5211,当9元采用522方式支付时,200元的支付方式为2100或1100250或110015022010,共3种方式,10元的支付只能用1张10元,此时共有1313种支付方式;当9元采用5211方式支付时:200元的支付方式为2100或1100250或110015022010,共3种方式,10元的支付只能用1张10元,此时共有1313种支付方式;所以总的支付方式共有336种10某班一天上午有4节课,每节都需要安排1名教师去上课,现从A,B,C,D,E,F 6名教师中安排4人分别上一节课,第一节课只能从A,B两人中安排

    23、一人,第四节课只能从A,C两人中安排一人,则不同的安排方案共有_种答案36解析第一节课若安排A,则第四节课只能安排C,第二节课从剩余4人中任选1人,第三节课从剩余3人中任选1人,共有4312种安排方案第一节课若安排B,则第四节课可安排A或C,第二节课从剩余4人中任选1人,第三节课从剩余3人中任选1人,共有24324种安排方案因此不同的安排方案共有122436(种)组能力关1(2019南宁调研)我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则“六合数”中首位为2的“六合数”共有()A18个 B15个 C12个 D9个答案B解析依题意,这个四位数的百位数、十位数、个位数之

    24、和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共计363315(个)故选B.2从正方体六个面的对角线中任取两条作为一对,其中所成的角为60的共有()A24对 B30对 C48对 D60对答案C解析解法一:与正方体的一个面上的一条对角线成60角的对角线有8条,故共有8对,正方体的12条面对角线共有81296(对),且每对均重复计算一次,故共有48(对)解法二:正方体的面对角线共有12条,两条为一对

    25、,共有1211266(对)同一面上的对角线不满足题意,对面的面对角线也不满足题意,一组平行平面共有6对不满足题意的对角线,所以不满足题意的共有3618(对)故从正方体六个面的对角线中任取两条作为一对,其中所成的角为60的共有661848(对)3将1,2,3,9这9个数字填在如图所示的空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法有()A6种 B12种 C18种 D24种答案A解析根据数字的大小关系可知,1,2,9的位置是固定的,如图所示,则剩余5,6,7,8这4个数字,而8只能放在A或B处,若8放在B处,则可以从5,6,7这3个数字中选一个放

    26、在C处,剩余两个位置固定,此时共有3种方法,同理,若8放在A处,也有3种方法,所以共有6种方法4(2020北京昌平区模拟)2019年3月2日,昌平 “回天”社区开展了7种不同类型的 “三月雷锋月,回天有我”社会服务活动. 其中有2种活动既在上午开展、又在下午开展,3种活动只在上午开展,2种活动只在下午开展小王参加了两种不同的活动,且分别安排在上、下午,那么不同安排方案的种数是_答案18解析小王参加的是两种不同的活动,有2种活动既在上午开展、又在下午开展,(1)设小王没参加既在上午开展、又在下午开展的2种活动,则有326种方案(2)设小王参加了既在上午开展、又在下午开展的2种活动,上午参加了既在

    27、上午开展、又在下午开展的2种活动之一,则有224种方案;下午参加了既在上午开展、又在下午开展的2种活动之一,则有326种方案;上下午都参加了既在上午开展、又在下午开展的2种活动,则有212种方案所以不同的安排方案有646218种5已知数列an是公比为q的等比数列,集合Aa1,a2,a10,从A中选出4个不同的数,使这4个数成等比数列,这样得到4个数的不同的等比数列的个数为_答案24解析当公比为q时,满足题意的等比数列有7个,当公比为时,满足题意的等比数列有7个,当公比为q2时,满足题意的等比数列有4个,当公比为时,满足题意的等比数列有4个,当公比为q3时,满足题意的等比数列有1个,当公比为时,

    28、满足题意的等比数列有1个,因此满足题意的等比数列共有77441124(个)6(2019河北衡水质检)已知一个公园的形状如图所示,现有3种不同的植物要种在此公园的A,B,C,D,E这五个区域内,要求有公共边界的两块相邻区域种不同的植物,则不同的种法共有_种答案18解析根据题意,分两步进行分析:对于A,B,C区域,三个区域两两相邻,种的植物都不能相同,将3种不同的植物全排列,安排在A,B,C区域,有A6(种)情况;对于D,E区域,分2种情况讨论:若C,E种的植物相同,则D有2种种法;若C,E种的植物不同,则E有1种种法,D也有1种种法;则D,E区域共有213(种)不同种法,故不同的种法共有6318(种)

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021届高考数学人教版一轮创新教学案:第10章 第1讲 分类加法计数原理与分步乘法计数原理 WORD版含解析.doc
    链接地址:https://www.ketangku.com/wenku/file-480516.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1