2021届高考数学复习 压轴题训练 外接球(1)(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021届高考数学复习 压轴题训练 外接球1含解析 2021 高考 数学 复习 压轴 训练 外接 解析
- 资源描述:
-
1、外接球1在菱形中,将沿折起到的位置,若二面角的大小为,三棱锥的外接球心为点,则三棱锥的外接球的表面积为ABCD解:四边形是菱形,是等边三角形,过球心作平面,则为等边的中心,取的中点为,则且,由二面角的大小为,得,即,在中,由,可得在中,即,设三棱锥的外接球的半径为,即,三棱锥的外接球的表面积为,故选:2已知三棱锥的各个顶点都在球的表面上,底面,是线段上一点,且过点作球的截面,若所得截面圆面积的最大值与最小值之差为,则球的表面积为ABCD解:因为,由勾股定理可得,设面所截圆的圆心为,外接球的球心为,则有,取的中点,连结,则,故,设,则,设球的半径为,则,故与垂直的截面圆的半径,所以,故所得截面圆
2、面积的最小值为,而最大截面圆的面积为,所以,解得,所以球的表面积为故选:3在三棱锥中,则这个三棱锥的外接球的半径为ABCD解:如图,可得,取中点,则为三角形的外心,设三棱锥的外接球的球心为,连接,则底面,连接,则为等腰三角形,取中点,连接,则,由,可得平面,平面,平面平面,又平面平面,平面,可得平面,则,过作,在等腰三角形中,求得,设,则,可得,由,可得,即,解得三棱锥的外接球的半径为故选:4三棱锥的顶点都在球的球面上,若三棱锥的体积的最大值为,则球的体积为ABCD解:因为,且,所以,过的中点作平面的垂线,则球心在直线上,设,球的半径为,则棱锥的高的最大值为,所以,解得,在中,则,由解得,所以
3、球的体积为故选:5已知三棱锥中,是以角为直角的直角三角形,为的外接圆的圆心,那么三棱锥外接球的体积为ABCD解:如图,设三棱锥外接球的球心为,半径为,连结,由已知可得,为圆的直径,则,因为,在中,由余弦定理可得,则,又,所以为钝角,由正弦定理可得,即,解得,所以,因为,三线共面,则,在中,在中,所以,解得,故三棱锥的外接球的体积为故选:6已知三棱锥的底面是正三角形,点在侧面内的射影是的垂心,当三棱锥体积最大值时,三棱锥的外接球的表面积为ABCD解:延长交于,连接,是的垂心,平面,平面,又平面,平面,平面,又平面,连接并延长交于,连接,由平面可得,又,平面,设在平面上的射影为,延长交于,连接,平
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
