高中数学新课标人教A版必修3课件:1.3算法案例.ppt
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 新课 标人教 必修 课件 1.3 算法 案例
- 资源描述:
-
1、一、三维目标(a)知识与技能1.理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。2.基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。(b)过程与方法在辗转相除法与更相减损术求最大公约数的学习过程中对比我们常见的约分求公因式的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨,领会数学算法计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。案例1 辗转相除法与更相减损术(c)情感态度与价值观1.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。2.在学习古代数学家解决数学问题的方法的过程中培养严谨的逻辑
2、思维能力,在利用算法解决数学问题的过程中培养理性的精神和动手实践的能力。二、教学重难点重点:理解辗转相除法与更相减损术求最大公约数的方法。难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言。三、学法在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并能模仿已经学过的程序框图与算法语句设计出辗转相除法程序框图与算法程序。3 59 15问题1:在小学,我们已经学过求最大公约数的知识,你能求出18与30的最大公约数吗?创设情景,揭示课题18 302318和30的最大公约数是23=6.先用两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.问题
3、2:我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求8251与6105的最大公约数?研探新知1.辗转相除法:例1 求两个正数8251和6105的最大公约数。分析:8251与6105两数都比较大,而且没有明显的公约数,如能把它们都变小一点,根据已有的知识即可求出最大公约数.解:8251610512146显然8251与6105的最大公约数也必是2146的约数,同样6105与2146的公约数也必是8251的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数。研探新知1.辗转相除法:例1
4、求两个正数8251和6105的最大公约数。解:8251610512146;6105214621813;214618131333;18133335148;333148237;1483740.则37为8251与6105的最大公约数。以上我们求最大公约数的方法就是辗转相除法。也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的。利用辗转相除法求最大公约数的步骤如下:第一步:用较大的数m除以较小的数n得到一个商q0和一个余数r0;(m=nq0+r0)第二步:若r00,则n为m,n的最大公约数;若r00,则用除数n除以余数r0得到一个商q1和一个余数r1;(n=r0q1+r1)第三步:若r10
5、,则r0为m,n的最大公约数;若r10,则用除数r0除以余数r1得到一个商q2和一个余数r2;(r0=r1q2+r2)依次计算直至rn0,此时所得到的rn-1即为所求的最大公约数。练习1:利用辗转相除法求两数4081与20723的最大公约数.(53)20723=40815+318;4081=31812+265;318=2651+53;265=535+0.2.更相减损术:我国早期也有解决求最大公约数问题的算法,就是更相减损术。更相减损术求最大公约数的步骤如下:可半者半之,不可半者,副置分母子之数,以少减多,更相减损,求其等也,以等数约之。翻译出来为:第一步:任意给出两个正数;判断它们是否都是偶数
6、。若是,用2约简;若不是,执行第二步。第二步:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。例2 用更相减损术求98与63的最大公约数.解:由于63不是偶数,把98和63以大数减小数,并辗转相减,即:986335;633528;35287;28721;21714;1477.所以,98与63的最大公约数是7。练习2:用更相减损术求两个正数84与72的最大公约数。(12)3.辗转相除法与更相减损术的比较:(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主;计算次数上辗转相除
7、法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到.否4.辗转相除法的程序框图及程序:开始输入两个正数m,nmn?r=m MOD nr0?输出n结束m=xm=nn=r否是是INPUT m,nIF mn THEN x=n n=m m=xEND IFr=m MOD nWHILE r0 m=nn=rr=m MOD n WENDPRINT nENDx=nn=m作业:课本P35页练习T1;P38页A组T1.案例2 秦九韶算法一、三维目标(a)知识与技能了解秦九韶算法的计算过程,并理解
8、利用秦九韶算法可以减少计算次数提高计算效率的实质。(b)过程与方法模仿秦九韶计算方法,体会古人计算构思的巧妙.(c)情感态度与价值观通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久。二、教学重难点重点:1.秦九韶算法的特点;难点:2.秦九韶算法的先进性理解.教学设计问题1设计求多项式f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值的算法,并写出程序.x=5f=2x5-5x4-4x3+3x2-6x+7PRINT fEND程序点评:上述算法一共做了15次乘法运算,5次加法运算.优点是简单,易懂;缺点是不通用,不能解决任意多项多求值问题,而且计算效
9、率不高.这样计算上述多项式的值,一共需要9次乘法运算,5次加法运算.问题2有没有更高效的算法?分析:计算x的幂时,可以利用前面的计算结果,以减少计算量,即先计算x2,然后依次计算的值.第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率.而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此第二种做法能更快地得到结果.问题3能否探索更好的算法,来解决任意多项式的求值问题?f(x)=2x5-5x4-4x3+3x2-6x+7=(2x4-5x3-4x2+3x-6)x+7=(2x3-5x2-4x+3)x-6)x+7=(2x2-5x-4)x+3)x-6)x+7=(2x-5
10、)x-4)x+3)x-6)x+7v0=2v1=v0 x-5=25-5=5v2=v1x-4=55-4=21v3=v2x+3=215+3=108v4=v3x-6=1085-6=534v5=v4x+7=5345+7=2677所以,当x=5时,多项式的值是2677.这种求多项式值的方法就叫秦九韶算法.例1:用秦九韶算法求多项式f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值.解法一:首先将原多项式改写成如下形式:f(x)=(2x-5)x-4)x+3)x-6)x+7v0=2 v1=v0 x-5=25-5=5v2=v1x-4=55-4=21v3=v2x+3=215+3=108v4=v3x-
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
