《创新设计》2015高考数学(苏教文)一轮配套文档:第9篇 第8讲 抛物线.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新设计2015高考数学苏教文一轮配套文档:第9篇 第8讲 抛物线 创新 设计 2015 高考 数学 苏教文 一轮 配套 文档
- 资源描述:
-
1、第8讲抛物线知 识 梳 理1抛物线的定义平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的轨迹叫做抛物线点F叫做抛物线的焦点,直线l叫做抛物线的准线其数学表达式:MFd(其中d为点M到准线的距离)2抛物线的标准方程与几何性质图形标准方程y22px(p0)y22px(p0)x22py(p0)x22py(p0)p的几何意义:焦点F到准线l的距离性质顶点O(0,0)对称轴y0x0焦点FFFF离心率e1准线方程xxyy范围x0,yRx0,yRy0,xRy0,xR开口方向向右向左向上向下辨 析 感 悟1对抛物线定义的认识(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线()
2、(2)抛物线y24x的焦点到准线的距离是4.()2对抛物线的标准方程与几何性质的理解(3)(2013北京卷改编)若抛物线yax2的焦点坐标为(0,1),则a,准线方程为y1.()(4)抛物线既是中心对称图形,又是轴对称图形()(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x22ay(a0)的通径长为2a.()感悟提升1一点提醒抛物线方程中,字母p的几何意义是抛物线的焦点F到准线的距离,等于焦点到抛物线顶点的距离牢记它对解题非常有益如(2)2两个防范一是求抛物线方程时,首先弄清抛物线的对称轴和开口方向,正确地选择抛物线的标准方程;二是求抛物线的焦点坐标
3、时,首先要把抛物线方程化为标准方程,如(3)考点一抛物线的定义及其应用【例1】 (2013江西卷改编)已知点A(2,0),抛物线C:x24y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|MN|_.解析如图所示,由抛物线定义知|MF|MH|,所以|MF|MN|MH|MN|.由MHNFOA,则,则|MH|MN|1,即|MF|MN|1.答案1规律方法 抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题【训练1】 (2014山东省
4、实验中学诊断)已知点P是抛物线y24x上的动点,点P在y轴上的射影是M,点A的坐标是(4,a),则当|a|4时,|PA|PM|的最小值是_解析将x4代入抛物线方程y24x,得y4,|a|4,所以A在抛物线的外部,如图,由题意知F(1,0),则抛物线上点P到准线l:x1的距离为|PN|,由定义知,|PA|PM|PA|PN|1|PA|PF|1.当A,P,F三点共线时,|PA|PF|取最小值,此时|PA|PM|也最小,最小值为|AF|11.答案1考点二抛物线的标准方程与几何性质【例2】 (2014郑州一模)如图,过抛物线y22px(p0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|
5、2|BF|AF|3,则此抛物线的方程为_解析如图,分别过A,B作AA1l于A1,BB1l于B1,由抛物线的定义知:|AF|AA1|,|BF|BB1|,|BC|2|BF|,|BC|2|BB1|,BCB130,AFx60,连接A1F,则AA1F为等边三角形,过F作FF1AA1于F1,则F1为AA1的中点,设l交x轴于K,则|KF|A1F1|AA1|AF|,即p,抛物线方程为y23x.答案y23x规律方法 (1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程(2)在解决与抛物线的
6、性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此【训练2】 (2014兰州一模)已知圆x2y2mx0与抛物线yx2的准线相切,则m_.解析抛物线的标准方程为x24y,所以准线为y1.圆的标准方程为2y2,所以圆心为,半径为.所以圆心到直线的距离为1,即1,解得m.答案考点三直线与抛物线的位置关系【例3】 已知A(8,0),B、C两点分别在y轴上和x轴上运动,并且满足0, ,(1)求动点P的轨迹方程;(2)是否存在过点A的直线l与动点P的轨迹交于M、N两点,且满足97,其中Q(1,0),若存在,求出直线l的方程;若不存在,说明理由解(1)设B
7、(0,b),C(c,0),P(x,y);则(8,b),(x,yb),(c,b),(xc,y)8xb(yb)0.由,得by代入得y24x.动点P的轨迹方程为y24x.(2)当直线l的斜率不存在时,x8与抛物线没有交点,不符合题意当直线l的斜率存在时,设直线l的斜率为k,则l:yk(x8)设M(x1,y1),N(x2,y2),则(x11,y1),(x21,y2),由97,得(x11)(x21)y1y297.即x1x2x1x21k2(x18)(x28)97,(1k2)x1x2(18k2)(x1x2)164k297.将yk(x8)代入y24x得k2x2(416k2)x64k20.直线l与y24x交于不
8、同的两点,(416k2)24k264k20,即k,由求根公式得:x则x1x2,x1x264.代入式得:64(1k2)(18k2)164k297.整理得k2,k.k,这样的直线l不存在规律方法 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到求根公式;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|x1x2p,若不过焦点,则必须用一般弦长公式【训练3】 (2012新课标全国卷)设抛物线C:x22py(p0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点(1)若BFD90,ABD
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
新教材2021-2022学年高中外研版英语选择性必修第四册课件:UNIT 2 LESSONS IN LIFE 预习 新知早知道1 扫描版.ppt
