《南方凤凰台》2015届高考数学(理江苏专用)二轮复习 专题七 第2讲 概率、随机变量及其分布列 27_《要点导学》.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 南方凤凰台
- 资源描述:
-
1、要点导学各个击破离散型随机变量及其分布列例1(2014苏北四市期末)某品牌汽车4S店经销A,B,C三种排量的汽车,其中A,B,C三种排量的汽车依次有5,4,3款不同车型.某单位计划购买该品牌3辆不同车型的汽车,且购买每款车型等可能.(1) 求该单位购买的3辆汽车均为B种排量汽车的概率;(2) 记该单位购买的3辆汽车的排量种数为X,求X的分布列及数学期望.【分析】(1) 古典概型,利用组合数公式即可.(2) 中先确定随机变量X的所有可能取值,然后求出各取值的概率,列出分布列.【解答】(1) 设“该单位购买的3辆汽车均为B种排量汽车”为事件M,则P(M)=,所以该单位购买的3辆汽车均为B种排量汽车
2、的概率为.(2) 随机变量X的所有可能取值为1,2,3.则P(X=1)=,P(X=3)=,P(X=2)=1-P(X=1)-P(X=3)=.所以X的概率分布列为X123P数学期望E(X)=1+2+3=.【点评】求离散型随机变量分布列的步骤:(1) 找出随机变量X的所有可能取值xi(i=1,2,3,n);(2) 求出各取值的概率P(X=xi)=pi;(3) 列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确.变式从某小组的5名女生和4名男生中任选3人去参加一项公益活动.(1) 求所选3人中恰有一名男生的概率;(2) 求所选3人中男生人数X的分布列.【解答】(1) 所选3人中恰有一名男生
3、的概率P=.(2) X的可能取值为0,1,2,3.P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.所以X的分布列为X0123P例2假定某人每次射击命中目标的概率均为,现连续射击3次.(1) 求此人至少命中目标2次的概率;(2) 若此人前3次射击都没有命中目标,则再补射1次后结束射击;否则,射击结束.记此人射击结束时命中目标的次数为X,求X的数学期望.【分析】问题(1)要考虑独立重复试验的问题,“至少命中2次”要分“恰命中2次”和“恰命中3次”两种情形.问题(2)要弄清X可能为0,1,2,3,然后分别求其相应概率.【解答】(1) 设此人至少命中目标2次的事件为A,则P(A)=+=
4、,即此人至少命中目标2次的概率为.(2) 由题意知X的可能取值为0,1,2,3,且P(X=0)=,P(X=1)=+=,P(X=2)=,P(X=3)=.从而E(X)=0+1+2+3=.【点评】在处理n次独立重复试验问题时要从三个方面考虑:一是每次试验在相同条件下进行;二是各次试验下的条件是相互独立的;三是每次试验都只有两种结果,即事件要么发生,要么不发生.事件A恰好发生k次的概率为P(X=k)=pk(1-p)n-k,k=0,1,2,n,其中p是一次试验中该事件发生的概率.变式(2014南通期末)如图,设P1,P2,P6为单位圆上逆时针均匀分布的六个点,现任选其中三个不同点构成一个三角形,记该三角
5、形的面积为随机变量S.(变式)(1) 求S=的概率;(2) 求S的分布列及数学期望E(S).【解答】(1) 从六个点任选三个不同点构成一个三角形共有种不同选法,其中S=的是有一个角是30的直角三角形(如P1P4P5),共62=12种,所以P=.(2) S的所有可能取值为,.S=的为顶角是120的等腰三角形(如P1P2P3),共6种,所以P=.S=的为等边三角形(如P1P3P5),共2种,所以P=.又由(1)知P=,故S的分布列为SP所以E(S)=+=.离散型随机变量的均值与方差例3如图,茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.(例3)(1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-493293.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
