分享
分享赚钱 收藏 举报 版权申诉 / 11

类型广西贵港市覃塘高级中学2016_2017学年高一数学6月月考试题201808140123.doc

  • 上传人:a****
  • 文档编号:494738
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:11
  • 大小:245KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    广西 贵港市 高级中学 2016 _2017 学年 数学 月月 考试题 201808140123
    资源描述:

    1、覃塘高中2017年春季期6月月考试题高一数学试卷说明:本试卷分卷和卷,卷为试题(选择题和客观题),学生自已保存,卷一般为答题卷,考试结束只交卷。一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目的要求)1设a+b0,且b0,则()Ab2a2ab Bb2a2abCa2abb2 Da2abb22在ABC中,若a=2,b=2,A=30,则B为()A60B 60或120C30D30或1503若直线l1:x+a2y+6=0,l2:(a2)x+3ay+2a=0,若l1l2则实数a的值为()A1或3 B0或3C1或0 D1或3或04九章算术是我国古代数学经典名著,它在集合学

    2、中的研究比西方早1千年,在九章算术中,将四个面均为直角三角形的四面体称为鳖臑,已知某“鳖臑”的三视图如图所示,则该鳖臑的外接球的表面积为()A200 B50 C100 D5已知数列an前n项和为,则S15+S22S31的值是()A57 B37C16 D576在ABC中,B=,AB=2,D为AB中点,BCD的面积为,则AC等于()A2 BC D7在正项等比数列an中,已知a3a5=64,则a1+a7的最小值为()A64 B32 C16 D88关于x的不等式axb0的解集是(1,+),则关于x的不等式(ax+b)(x3)0的解集是()A(,1)(3,+) B(1,3)C(1,3) D(,1)(3,

    3、+)9下列各式中最小值为2的是()A B+ C2x+ Dcosx+10设a,b是两条直线,是两个平面,则下列4组条件中:a,b,;a,b,;a,b,;a,b,能推得ab的条件有()组A1 B2 C3 D411圆x2+y2+4x2y1=0上存在两点关于直线ax2by+2=0(a0,b0)对称,则的最小值为()A8 B9 C16 D1812数列an满足a1=1,且an+1=a1+an+n(nN*),则等于()A BC D二、填空题(每小题5分,共20分)13an是等差数列,a3=6,其前9项和S9=90,则经过(5,a5)与(7,a7)两点的直线的斜率为_14记不等式所表示的平面区域为D,若对任意

    4、(x0,y0)D,不等式x02y0+c0恒成立,则c的取值范围是_15如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示GH,MN是异面直线的图形的序号为_16在ABC中,a,b,c分别为内角A,B,C所对的边,若a=,A=,则b+c的最大值为_三、解答题(17题10分,其余每题12分,解答须写出文字说明、证明过程和演算步骤)17已知an是等差数列,bn是等比数列,且b2=3,b3=9,a1=b1,a14=b4(1)求an和bn的通项公式;(2)设cn=an+bn,求数列cn的前n项和18已知a、b、c分别是ABC的三个内角A、B、C的对边(1)若ABC面积SABC=,c=2,A=

    5、60,求a、b的值;(2)若a=ccosB,且b=csinA,试判断ABC的形状19在ABC中,角A,B,C所对边分别为a,b,c,且向量=(sinA,sinB),=(cosB,cosA),满足=sin2C(1)求角C的大小;(2)若sinA,sinC,sinB成等差数列,且,求边c的长20在数列an中,设f(n)=an,且f(n)满足f(n+1)2f(n)=2n(nN*),且a1=1(1)设,证明数列bn为等差数列;(2)求数列an的前n项和Sn21在锐角ABC 中,角 A,B,C 所对的边分别为a,b,c,已知a=,b=3,sinB+sinA=2(1) 求角A 的大小;(2) 求ABC 的

    6、面积22在ABC中,角A,B,C的对边分别为a,b,c(1)若a,b,c成等比数列,求的值;(2)若A,B,C成等差数列,且b=2,设A=,ABC的周长为l,求l=f()的最大值高一数学6月月考答案1,D解:a+b0,且b0a0,|a|b|,ab由不等式的基本性质得:a2abb2 2,B解:由正弦定理可知 =,sinB=B(0,180)B=60或1203,C解:设,A2=a2,B2=3a,C2=2a由,得,解得a1=0,a2=1,a=3代入验证得,a1=0,a2=1若l1l2则实数a的值为1或0 4,B解:由三视图复原几何体,几何体是底面是直角三角形,一条侧棱垂直底面直角顶点的三棱锥;扩展为长

    7、方体,也外接与球,它的对角线的长为球的直径:=5该三棱锥的外接球的表面积为:=50, 5A解:,S15=37+(3151)=23,S22=311=33,S31=315+(3311)=47,S15+S22S31=233347=576,B解:由题意可知在BCD中,B=,AD=1,BCD的面积S=BCBDsinB=BC=,解得BC=3,在ABC中由余弦定理可得:AC2=AB2+BC22ABBCcosB=22+32223=7,AC=, 7,C解:数列an是等比数列,且a3a5=64,由等比数列的性质得:a1a7=a3a5=64,a1+a7a1+a7的最小值是16 8,A解:关于x的不等式axb0的解集

    8、是(1,+),关于x的不等式(ax+b)(x3)0可化为(x+1)(x3)0,x1或x3关于x的不等式(ax+b)(x3)0的解集是x|x1或x3 故选A9,C解:由题意,A:=2,当且仅当即x2=3时取“=“,显然x无实数解,所以A不正确;B:若ab0时,则,即0,所以B不正确;C:,当且仅当x=0时,取“=”,所以C正确D:当cos0时,其最小值小于0,所以D不正确 10,C解:b,过b与相交的直线cb,若c,则结论成立,否则不成立;在内作直线c垂直于,的交线,c,a,ac,b,bc,ab,故结论成立;b,b,a,ab,故结论成立;a,a,b,过b与相交的直线cb,ac,ab,故结论成立

    9、11,B解:由圆的对称性可得,直线ax2by+2=0必过圆心(2,1),所以a+b=1所以,当且仅当,即2a=b时取等号,12,A解:an+1=a1+an+n(nN*),a1=1an+1an=n+1,an=(anan1)+(an1an2)+(a2a1)+a1=n+(n1)+2+1=2则=+=2= 13,2 解:an是等差数列且a3=6及S9=90,设此数列的首项为a1,公差为d,可以得到:;解可得:,有等差数列的通项公式可以得到:a5=a1+4d=2+42=10,a7=a1+6d=2+62=14,(5,a5)即(5,10),(7,a7)即(7,14); 有斜率公式得斜率为 14,(,1 解:由

    10、已知得到可行域如图:由图可知,对任意(x0,y0)D,不等式x02y0+c0恒成立,即cx+2y恒成立,即c(x+2y)min,当直线z=x+2y经过图中A(1,0)时z最小为1,所以c1; 15, 解:异面直线的判定定理:“经过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线”根据异面直线的判定定理可知:在图中,直线GH、MN是异面直线;在图中,由G、M均为棱的中点可知:GHMN;在图中,G、M均为棱的中点,四边形GMNH为梯形,则GH与MN相交16,2 解:由正弦定理可得:=2,b+c=2sinB+2sinC=2sinB+2sin=2sinB+2cosB+=3sinB+cosB

    11、=2sin2,当且仅当B=时取等号b+c的最大值为217已知数列an满足a1=4,an+1=2an(1)求数列an的前n项和Sn;(2)设等差数列bn满足b7=a3,b15=a4,求数列bn的前n项和Tn17,解:a1=4,由an+1=2an,知数列an是公比为2的等比数列,则(1)Sn=2n+24;(2)设等差数列bn的公差为d,由b7=a3=16,b15=a4=32,得d=2,b1=4bn=b1+(n1)d=4+2(n1)=2n+2则18在ABC中,角A、B、C对应的边分别是a、b、c,C=,且sinB=2sinAcos(A+B)(1)证明:b2=2a2;(2)若ABC的面积是1,求边c1

    12、8,(1)证明:sinB=2sinAcos(A+B),b=2a(cosC),b=2a,b2=2a2(2)解:S=ab=1,化为ab=2联立,解得a=,b=2=10,解得c=19已知关于x的不等式ax2+(1a)x10(1)当a=2时,求不等式的解集(2)当a1时求不等式的解集19,解(1)原不等式即(x1)(ax+1)0,当a=2时,即(x1)(2x+1)0,求得x,或x1,故不等式的解集为x|x,或x1(2)二次项系数含有参数,因此对a在0点处分开讨论若a0,则原不等式ax2+(1a)x10等价于(x1)(ax+1)0其对应方程的根为与1又因为a1,则当a=0时,原不等式为x10,所以原不等

    13、式的解集为x|x1;当a0时,1,所以原不等式的解集为x|x,或 x1;当1a0时,1,所以原不等式的解集为x|1x20已知数列an的前n项和为Sn,且满足an=2Sn+1(nN*)(1)求数列an的通项公式;(2)若bn=(2n1)an,求数列bn的前n项和Tn20,解:(1)当n=1时,a1=2S1+1=2a1+1,解得a1=1当n2时,an=2Sn+1,an1=2Sn1+1,两式相减得anan1=2an,化简得an=an1,所以数列an是首项为1,公比为1的等比数列,可得(2)由()得,当n为偶数时,bn1+bn=2,;当n为奇数时,n+1为偶数,Tn=Tn+1bn+1=(n+1)(2n

    14、+1)=n所以数列bn的前n项和21在ABC中,内角A,B,C所对的边长分别是a,b,c(1)若sinC+sin(BA)=sin2A,试判断ABC的形状(2)若acosC+asinCbc=0求角A;21,解:(1)由题意得:sinC+sin(BA)=sin2A得到sin(A+B)+sin(BA)=sin2A=2sinAcoA即:sinAcosB+cosAsinB+sinBcosAcosBsinA=2sinAcoA所以有:sinBcosA=sinAcosA,(10分)当cosA=0时,ABC为直角三角形(12分)当cosA0时,得sinB=sinA,由正弦定理得a=b,所以,ABC为等腰三角形(

    15、14分)(2)ABC中,acosC+asinCbc=0,利用正弦定理可得sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC,化简可得sinAcosA=1,sin(A30)=,A30=30,A=6022如图,已知三棱锥ABPC中,APPC,ACBC,M为AB中点,D为PB中点,且PMB为正三角形(1)求证:DM平面APC;(2)求证:平面ABC平面APC;(3)若BC=4,AB=20,求三棱锥DBCM的体积22,证明:(1)由已知得,MD是ABP的中位线MDAPMD面APC,AP面APCMD面APC;(2)PMB为正三角形,D为PB的中点MDPB,APPB又APPC,PBPC=PAP面PBC(6分)BC面PBCAPBC又BCAC,ACAP=ABC面APC,BC面ABC平面ABC平面APC;(3)由题意可知,三棱锥ABPC中,APPC,ACBC,M为AB中点,D为PB中点,且PMB为正三角形MD面PBC,BC=4,AB=20,MB=10,DM=5,PB=10,PC=2,MD是三棱锥DBCM的高,SBCD=2,

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:广西贵港市覃塘高级中学2016_2017学年高一数学6月月考试题201808140123.doc
    链接地址:https://www.ketangku.com/wenku/file-494738.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1