2022初中数学总复习 第二板块 热点问题突破 专题三 开放探究题课件 新人教版.pptx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022初中数学总复习 第二板块 热点问题突破 专题三 开放探究题课件 新人教版 2022 初中 数学 复习 第二 板块 热点问题 突破 专题 开放 探究 课件 新人
- 资源描述:
-
1、专题三 开放探究题第二板块2022初 中 总 复 习 优 化 设 计CHU ZHONG ZONG FU XI YOU HUA SHE JI内容索引01专题名师解读02热点考向例析专题名师解读开放探究型问题最常见的是命题中缺少一定的条件或无明确的结论,要求添加条件或概括结论,或者是给定条件,判断结论存在与否的问题.近几年来出现了一些根据提供的材料,按自己的喜好自编问题并加以解决的试题.开放探究型问题具有较强的综合性,既能充分地考查学生对基础知识的掌握程度,又能较好地考查学生观察、分析、比较、概括的能力,发散思维能力和空间想象能力等,体现了学生的自主性,符合课程标准的理念,所以近几年来此类题目成为
2、中考命题的热点.开放探究型问题涉及知识面广,要求解题者有较强的解题能力和思维能力,有时还需要一定的语言表达能力和说理能力.开放探究型问题通常有条件开放、结论开放、条件结论都开放等类型;就探究而言,可归纳为探究条件型、探究结论型、探究结论存在与否型及归纳探究型四种.探究条件型是指根据问题提供的残缺条件添补若干个条件,使结论成立.解决此类问题的一般方法是:根据结论成立所需要的条件增补条件,此时要注意已有的条件及由已有的条件推导出来的条件,不可有重复条件,也不能遗漏条件.探究结论型问题是指根据题目所给的已知条件进行分析、推断,推导出一个与已知条件相关的结论.解决此类问题的关键是对已知的条件进行综合推
3、理,导出新的结论.探究结论存在型问题的解法一般是先假定存在,然后结合现有的条件进行推理,最后推导出问题的解或矛盾再加以说明.归纳探究型问题是指给出一些条件和结论,通过归纳、总结、概括,由特殊猜测一般的结论或规律,解决此类问题的一般方法是对由特殊得到的结论进行合理猜想,并进行验证.热点考向例析考向一条件开放型问题条件开放问题主要是指问题的条件开放,即:问题的条件不完备或满足结论的条件不唯一,解决此类问题的思路是从所给结论出发,逆向探索,逐步探寻合乎要求的一些条件,从而进行逻辑推理证明,确定满足结论的条件.【例1】如图,已知点B,F,C,E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件
4、证明ABED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使ABED成立,并给出证明.供选择的三个条件(请从中选择一个):AB=ED;BC=EF;ACB=DFE.解法一FB=CE,AC=DF,添加AB=ED.证明:因为FB=CE,所以BC=EF.又AC=DF,AB=ED,所以ABCDEF.所以B=E.所以ABED.解法二FB=CE,AC=DF,添加ACB=DFE.证明:因为FB=CE,所以BC=EF.又ACB=DFE,AC=DF,所以ABCDEF.所以B=E.所以ABED.考向二结论开放探究问题结论开放问题就是给出问题的条件,根据已知条件探究问题的结论
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-497387.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
