山东省潍坊市2019届高三下学期高考模拟(一模)考试数学(理)试卷 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省潍坊市2019届高三下学期高考模拟一模考试数学理试卷 WORD版含解析 山东省 潍坊市 2019 届高三 下学 高考 模拟 考试 数学 试卷 WORD 解析
- 资源描述:
-
1、潍坊市高考模拟考试理科数学本试卷共4页.满分150分.注意事项:1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3. 考试结束,考生必须将试题卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. C. D
2、. 【答案】B【解析】【分析】先求出集合B,再利用交集并集的定义判断选项【详解】B,x|,AB,故选:B【点睛】本题考查交集并集的求法,是基础题,解题时要注意交集并集的区别2.若复数满足,则的虚部为( )A. 5B. C. D. -5【答案】C【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【详解】由(1+i)z|3+4i|,得z,z的虚部为故选:C【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题3.已知是两个不同平面,直线,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】表示两个不同
3、平面,直线是内一条直线,若,则,所以是的充分条件;若不能推出,故不是充分条件是的充分不必要条件故选A4.已知双曲线:的一条渐近线方程为,则的离心率为( )A. B. C. D. 【答案】C【解析】【分析】利用双曲线的渐近线推出b,a关系,然后求解离心率即可【详解】由已知双曲线C(a0,b0)的一条渐近线方程为y2x,可得,故选:C【点睛】本题考查双曲线的简单性质的应用,解题时注意焦点位置,考查计算能力5.执行下边的程序框图,如果输出的值为1,则输入的值为( )A. 0B. C. 0或D. 0或1【答案】C【解析】【分析】根据程序框图,转化为条件函数进行计算即可【详解】程序对应的函数为y,若x0
4、,由y1得ex1,得x0,满足条件若x0,由y2lnx1,得lnx1,即xe,满足条件综上x0或e,故选:C【点睛】本题主要考查程序框图的识别和应用,根据条件转化为分段函数是解决本题的关键6.某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布,试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的,则此次数学考试成绩在90分到105分之间的人数约为( )A. 150B. 200C. 300D. 400【答案】C【解析】【分析】求出,即可求出此次数学考试成绩在90分到105分之间的人数【详解】,所以,所以此次数学考试成绩在90分到105分之间的人数约为故选:C
5、【点睛】本小题主要考查正态分布曲线的特点及曲线所表示的意义等基础知识,考查运算求解能力,考查数形结合思想属于基础题7.若函数的图象过点,则( )A. 点是的一个对称中心B. 直线是的一条对称轴C. 函数的最小正周期是D. 函数的值域是【答案】D【解析】【分析】根据函数f(x)的图象过点(0,2),求出,可得f(x)cos2x+1,再利用余弦函数的图象和性质,得出结论【详解】由函数f(x)2sin(x+2)cosx (0)的图象过点(0,2),可得2sin22,即sin21,2,故f(x)2sin(x+2)cosx2cos2xcos2x+1,当x时,f(x)1,故A、B都不正确;f(x)的最小正
6、周期为,故C不正确;显然,f(x)cos2x+10,2,故D正确,故选:D【点睛】本题主要考查余弦函数的图象和性质,属于中档题8.函数的图象可能是( )A. B. C. D. 【答案】A【解析】【分析】计算函数与y轴的交点坐标,再判断函数的单调性,即可判断出答案【详解】当x0时,y4130,排除C,当x0时,是单调递减的,当x时,导函数为-4sinx-0时,函数时递减的,故选A.故选:A【点睛】本题考查了函数图象的判断,一般从奇偶性,单调性,特殊值等方面判断,属于基础题9.已知偶函数,当时,若,为锐角三角形的两个内角,则( )A. B. C. D. 【答案】B【解析】【分析】根据题意,由函数的
7、解析式可得f(x)在(-1,0)上为减函数,结合函数的奇偶性可得f(x)在(0,1)上为增函数,又由,为锐角三角形的两个内角分析可得sinsin(90)cos,结合函数的单调性分析可得答案【详解】根据题意,当x(1,0)时,f(x)2x()x,则f(x)在(0,1)上为减函数,又由f(x)为偶函数,则f(x)在(0,1)上为增函数,若,为锐角三角形的两个内角,则+90,则90,则有sinsin(90)cos,则有f( sin)f(cos),故选:B【点睛】本题考查函数的单调性与奇偶性的综合应用,涉及三角函数的诱导公式的运用,属于基础题10.已知不共线向量,夹角为,在处取最小值,当时,的取值范围
8、为( )A. B. C. D. 【答案】C【解析】试题分析:由题意可得, , ,由二次函数知,当上式取最小值时,由题意可得,求得,故选:C考点:数量积表示两个向量的夹角.11.如图所示,在著名的汉诺塔问题中,有三根高度相同的柱子和一些大小及颜色各不相同的圆盘,三根柱子分别为起始柱、辅助柱及目标柱.已知起始柱上套有个圆盘,较大的圆盘都在较小的圆盘下面.现把圆盘从起始柱全部移到目标柱上,规则如下:每次只能移动一个圆盘,且每次移动后,每根柱上较大的圆盘不能放在较小的圆盘上面,规定一个圆盘从任一根柱上移动到另一根柱上为一次移动.若将个圆盘从起始柱移动到目标柱上最少需要移动的次数记为,则( )A. 33
9、B. 31C. 17D. 15【答案】D【解析】【分析】由简单的合情推理得:是以P(1)+12为首项,2为公比的等比数列,由等比数列通项公式可得:P(n)+12n,所以P(n)2n1,得解【详解】设把圆盘从起始柱全部移到目标柱上最少需要移动的次数记为p(n),则把起始柱上的(除最底下的)圆盘从起始柱移动到辅助柱最少需要移动的次数记为p(n1),则有P(n)2P(n1)+1,则有P(n)+12P(n1)+1,又P(1)1,即是以P(1)+12为首项,2为公比的等比数列,由等比数列通项公式可得:P(n)+12n,所以P(n)2n1,即P(4)24115,故选:D【点睛】本题考查了数列的递推公式及等
10、比数列的通项公式,属中档题12.定义:区间,的长度均为,若不等式的解集是互不相交区间的并集,设该不等式的解集中所有区间的长度之和为,则( )A. 当时,B. 当时,C. 当时,D. 当时,【答案】B【解析】【分析】当m0时,m0,令f(x)mx2(3+3m)x+2m+40的两根为x1,x2,且x1x2,根据韦达定理以及f(1),f(2)的符号,判断x1,x2与1和2的大小可得不等式的解集,再根据区间长度的定义可得【详解】当m0时,00,令f(x)mx2(3+3m)x+2m+40的两根为x1,x2,且x1x2,则0,且x1+x23,f(1)m33m+2m+410,f(2)4m66m+2m+420
11、,1x12x2,所以不等式的解集为(1,x1(2,x2,lx11+x22x1+x2333,故选:B【点睛】本题考查分式不等式的解法,涉及对新定义区间长度的理解,属于难题二、填空题:本大题共4小题,每小题5分,共20分.13.若,满足约束条件,则的最大值是_【答案】3,3【解析】分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.详解:由约束条件作出可行域如图:联立,解得,化目标函数为直线方程的斜截式.由图可知,当直线过,直线在y轴上的截距最大,z最小,最小值为;当直线过时,直线在y轴上的截距最小,z最大,最大值为. 的取
12、值范围为3,3.故答案为:3,3.点睛:利用线性规划求最值,一般用图解法求解,其步骤是(1)在平面直角坐标系内作出可行域(2)考虑目标函数的几何意义,将目标函数进行变形(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解(4)求最值:将最优解代入目标函数即可求出最大值或最小值. 14.在等比数列中,为的前项和.若,则_【答案】10【解析】【分析】根据题意,由等比数列的通项公式,分析可得q48q,解可得q的值,结合等比数列的前n项和公式可得Sn2n11023,解可得n的值,即可得答案【详解】根据题意,等比数列an中,a11,a58a2,则有q48q,解可得q2,若Sn1023
13、,则有2n11023,解可得:n10;故答案为:10【点睛】本题考查等比数列的前n项和公式的应用,关键是掌握等比数列前n项和的形式,属于基础题15.已知抛物线的焦点为,准线为,过的直线与抛物线及其准线依次相交于、三点(其中在、之间且在第一象限),若,则_【答案】2【解析】【分析】由已知|MN|2|MF|可得MN所在直线当斜率,写出MN所在直线方程,与抛物线方程联立,求得G的横坐标,再由抛物线焦点弦长公式求解p【详解】如图,过M作MHlH,由|MN|2|MF|,得|MN|2|MH|,MN所在直线斜率为,MN所在直线方程为y(x),联立,得12x220px+3p20解得:,则|GF|,即p2故答案
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-498543.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
