2022届新高考数学人教版一轮复习作业试题:第3章第2讲 导数的简单应用 1 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届新高考数学人教版一轮复习作业试题:第3章第2讲 导数的简单应用 WORD版含解析 2022 新高 学人 一轮 复习 作业 试题 导数 简单 应用 WORD 解析
- 资源描述:
-
1、高考资源网() 您身边的高考专家第三章 导数及其应用第二讲导数的简单应用练好题考点自测1.2021陕西模拟若函数f(x)=kx-ln x在区间(1,+)上单调递增,则k的取值范围是()A.(-,-2B.(-,-1C.2,+)D.1,+)2.下列说法错误的是()A.函数在某区间上或定义域内的极大值是唯一的B.若x0是可导函数y=f(x)的极值点,则一定有f (x0)=0C.函数的最大值不一定是极大值,函数的最小值也不一定是极小值D.函数f(x)=xsin x有无数个极值点3.2017全国卷,5分若x=-2是函数f(x)=(x2+ax-1)ex-1的极值点,则 f(x)的极小值为()A.-1B.-
2、2e-3C.5e-3D.1图3-2-14.多选题函数y=f(x)的导函数的图象如图3-2-1所示,则下列说法正确的是()A.(0,3)为函数y=f(x)的单调递减区间B.(5,+)为函数y=f(x)的单调递增区间C.函数y=f(x)在x=0处取得极大值D.函数y=f(x)在x=5处取得极小值5.2021河南省名校第一次联考已知函数f(x)=x(x-c)2在x=2处取极大值,则c=.6.2021武汉市部分学校质检设函数f(x)=ln在区间-,上的最小值和最大值分别为m和M,则m+M=.拓展变式1.2020全国卷,12分已知函数f(x)=ex+ax2-x.(1)当a=1时,讨论f(x)的单调性;(
3、2)当x0时,f(x)x3+1,求a的取值范围.2.已知函数g(x)=x3-x2+2x+5.(1)若函数g(x)在(-2,-1)内单调递减,则a的取值范围为;(2)若函数g(x)在(-2,-1)内存在单调递减区间,则a的取值范围为;(3)若函数g(x)在(-2,-1)上不单调,则a的取值范围为.3.2017北京,13分已知函数f(x)=excos x-x.(1)求曲线y=f(x)在点(0,f(0)处的切线方程;(2)求函数f(x)在区间0,上的最大值和最小值.4.2020广西桂林三校联考已知函数f(x)=ax2-(a+2)x+ln x.(1)函数g(x)=f(x)-ax2+1,在其定义域上g(
4、x)0恒成立,求实数a的最小值;(2)当a0时, f(x)在区间1,e上的最小值为-2,求实数a的取值范围.5.2021湖南名校大联考若f(x)为定义在R上的偶函数,当x(-,0时,f(x)+2x0,则不等式f(x+1)-f(x+2)2x+3的解集为()A.(,+) B.(-,-3)C.(-,-)D.(-,+)答 案第二讲导数的简单应用1.D因为f(x)=kx-ln x,所以f (x)=k-.因为f(x)在区间(1,+)上单调递增,所以当x1时,f (x)=k-0恒成立,即k在区间(1,+)上恒成立.因为x1,所以00,解得x1,令f (x)0,解得-2x1,所以f(x)在(-,-2)上单调递
5、增,在(-2,1)上单调递减,在(1,+)上单调递增,所以当x=1时,f(x)取得极小值,且f(x)极小值=f(1)=-1,故选A.4.BD由函数y=f(x)的导函数的图象可知,当x-1或3x5时,f (x)0,y=f(x)单调递减,当-1x5时,f (x)0,y=f(x)单调递增,由此可知A错误,B正确;函数y=f(x)在x=-1,x=5处取得极小值,在x=3处取得极大值,因此可知C错误,D正确.故选BD.5.6解法一由题知,f (x)=(x-c)2+2x(x-c)=(x-c)(3x-c),当c0时,不合题意,故c0.当x变化时,f (x),f(x)的变化情况如下表:x(-,)(,c)c(c
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-501923.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
