河北省乐亭新寨高级中学高一数学教案:第一章 解三角形 第三课时正弦定理 必修5.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省乐亭新寨高级中学高一数学教案:第一章 解三角形 第三课时 正弦定理 必修5 河北省 乐亭 高级中学 数学教案 第一章 三角形 第三 课时 正弦 定理 必修
- 资源描述:
-
1、、教学目标:进一步熟悉正、余弦定理内容,能够应用正、余弦定理进行边角关系的相互转化,判断三角形的形状,证明三角形中的三角恒等式;通过正、余弦定理在边角互换时所发挥的桥梁作用来反映事物之间的内在联系;通过三角恒等式的证明来反映事物外在形式可以相互转化而内在实质的不变性.教学重点:利用正、余弦定理进行边角互换.教学难点:1.利用正、余弦定理进行边角互换时的转化方向;2.三角恒等式证明中结论与条件之间的内在联系的寻求.教学过程:.复习回顾前面两节课,我们一起学习了正弦定理、余弦定理的内容,并且接触了利用正、余弦定理解三角形的有关题型.下面,我们先来回顾一下正、余弦定理的内容.正弦定理、余弦定理实质上
2、反映了三角形内的边角关系,运用定理可以进行边与角之间的转换,这一节,我们将通过例题分析来学习正、余弦定理的边角转换功能在证明三角恒等式及判断三角形形状时的应用.讲授新课例1已知ABC,BD为B的平分线,求证:ABBCADDC分析:前面大家所接触的解三角形问题是在一个三角形内研究问题,而B的平分线BD将ABC分成了两个三角形:ABD与CBD,故要证结论成立,可证明它的等价形式:ABADBCDC,从而把问题转化到两个三角形内,而在三角形内边的比等于所对角的正弦值的比,故可利用正弦定理将所证继续转化为,再根据相等角正弦值相等,互补角正弦值也相等即可证明结论.证明:在ABD内,利用正弦定理得:,即在B
3、CD内,利用正弦定理得:,即.BD是B的平分线.ABDDBC,sinABDsinDBC.ADBBDC180,sinADBsin(180BDC)sinBDC,评述:此题可以启发学生利用正弦定理将边的关系转化为角的关系,并且注意互补角的正弦值相等这一特殊关系式的应用.例2在ABC中,求证:a2sin2Bb2sin2A2absinC分析:此题所证结论包含关于ABC的边角关系,证明时可以考虑两种途径:一是把角的关系通过正弦定理转化为边的关系,若是余弦形式则通过余弦定理;二是把边的关系转化为角的关系,一般是通过正弦定理 另外,此题要求学生熟悉相关的三角函数的有关公式,如sin2B2sinBcosB等,以
4、便在化为角的关系时进行三角函数式的恒等变形.证明一:(化为三角函数)a2sin2Bb2sin2A(2RsinA)22sinBcosB(2RsinB)22sinAcosA8R2sinAsinB(sinAcosBcosAsinB)8R2sinAsinBsinC22RsinA2RsinBsinC2absinC所以原式得证 证明二:(化为边的式子)左边a22sinBcosBb22sinAcosAa2b2(a2c2b2b2c2a2)2c22ab2absinC 评述:由边向角转化,通常利用正弦定理的变形式:a2RsinA,b2RsinB,c2RsinC,在转化为角的关系式后,要注意三角函数公式的运用,在此
5、题用到了正弦二倍角公式sin2A2sinAcosA,正弦两角和公式sin(AB)sinAcosBcosAsinB;由角向边转化,要结合正弦定理变形式以及余弦定理形式二 三角形的有关证明问题,主要围绕三角形的边和角的三角函数展开,从某种意义上来看,这类问题就是有了目标的含边和角的式子的化简问题.例3已知A、B、C是ABC的三个内角,且满足(sinAsinB)2sin2C3sinAsinB求证:AB120 分析:要证AB120,由于ABC180,只要证明C60,而已知条件为三角函数关系,故应考虑向三角函数的转化,又在0180之间,余弦值所对应角唯一,故可证明cosC,而由余弦定理cosC,所以应考
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-502800.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
