山东省郓城一中2012届高三理科数学三轮复习:专题10 圆锥曲线及其应用.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省郓城一中2012届高三理科数学三轮复习:专题10 圆锥曲线及其应用 山东省 郓城 一中 2012 届高三 理科 数学 三轮 复习 专题 10 圆锥曲线 及其 应用
- 资源描述:
-
1、数学专题十 圆锥曲线及其应用【考点精要】考点一. 椭圆、双曲线、抛物线的离心率。如:设双曲线(a0,b0)的渐近线与抛物线y=x2 +1相切,则该双曲线的离心率等于( )A. B. 2 C. D. 考点二. 圆锥曲线的第一或第二定义。如:已知椭圆的右焦点为,右准线为,点,线段交于点,若,则=( )A. B. 2 C. D. 3 考点三. 圆锥曲线的渐近线的方程和离心率等概念之间的关系。直线与圆锥曲线的位置关系,考查学生对基本概念、基本方法和基本技能的掌握。如:设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为( )A. B. C. D. 考点四. 圆锥曲线的的定义、线段长、焦半径。将圆锥曲线
2、的相关知识与向量等知识相结合,考查圆锥曲线的的定义、线段长、焦半径等知识。考点五. 圆锥曲线中有关角、线段、面积。以圆锥曲线为依托,借助点与线的关系,考查圆锥曲线中有关角、线段、面积等知识,考查综合运算能力。如:设抛物线=2x的焦点为F,过点M(,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于C,=2,则BCF与ACF的面积之比=( )A. B. C. D. 考点六. 圆锥曲线中有关的距离最短、距离之和最小。利用圆锥曲线与直线的特殊关系,研究有关的距离最短、距离之和最小等,考查学生分析问题、解决问题以及数形结合的能力。如:已知直线和,抛物线上一动点到和的距离之和的最小值是( )A.2
3、 B.3 C. D. 考点七. 待定系数法求曲线方程。能用待定系数法求曲线方程,处理直线与圆锥曲线的相关问题以及有关对称问题。此类问题多属于中档或高档题。如:过点(1,0)的直线l与中心在原点,焦点在x轴上且离心率为的椭圆C相交于A、B两点,直线y=x过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称,试求直线l与椭圆C的方程.考点八. 求圆锥曲线方程的方法。能运用多种方法(如:直接法、定义法、几何法、代入法、参数法、交规法等)求圆锥曲线的方程,求动点轨迹时应注意它的完备性和纯粹性。巧点妙拨1. 直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程组是否有实
4、数解或实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2. 当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.3. 求圆锥曲线中的最值问题解决方法一般有两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来做非常巧妙;二是代数法,将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用均值不等式、函数的单调性或三角函数的有界性等求最值。【典题对应】例1
5、.(2009山东)设,在平面直角坐标系中,已知向量,向量,动点的轨迹为E.(1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;(3)已知,设直线与圆C:(1R2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.命题意图:本题主要考查直线与圆的方程和位置关系,以及直线与椭圆的位置关系,可以通过解方程组法研究有没有交点问题,有几个交点的问题。解析:(1)因为,所以, 即.当m=0时,方程表示两直线,方程为;当时,方程表示的是圆;
6、当且时,方程表示的是椭圆;当时,方程表示的是双曲线.(2)当时,轨迹E的方程为,设圆心在原点的圆的一条切线为,解方程组得,即,要使切线与轨迹E恒有两个交点A,B,则使=,即,即, 且,要使, 需使,即,所以, 即且, 即恒成立.所以又因为直线为圆心在原点的圆的一条切线,所以圆的半径为, 所求的圆为.当切线的斜率不存在时,切线为,与交于点或也满足.综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.(3)当时,轨迹E的方程为,设直线的方程为,因为直线与圆C:(1R2)相切于A1,由(2)知, 即 ,因为与轨迹E只有一个公共点B1,由(2)知得,即有唯一解.则=, 即
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
