河北省张家口市宣化一中2019-2020学年高一数学上学期11月月考试题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省 张家口市 宣化 一中 2019 2020 学年 数学 上学 11 月月 考试题 解析
- 资源描述:
-
1、河北省张家口市宣化一中2019-2020学年高一数学上学期11月月考试题(含解析)第卷(选择题)一、选择题1.在不等式表示的平面区域内的点是( )A. B. C. D. 【答案】B【解析】试题分析:,可知点在不等式表示的平面区域内故B正确考点:不等式表示平面区域2.设的内角所对的边分别为,若,则( )A. B. C. D. 【答案】B【解析】【分析】根据正弦定理求解即可得到所求结果【详解】由正弦定理得,又,为锐角,故选B【点睛】在已知两边和其中一边的对角解三角形时,需要进行解的个数的讨论,解题时要结合三角形中的边角关系,即“大边(角)对大角(边)”进行求解,属于基础题3.已知等比数列满足,则数
2、列前项的和( )A. B. C. D. 【答案】C【解析】设等比数列an的公比为q,a1+a2=6,a4+a5=48,a1(1+q)=6,(1+q)=48,联立解得a1=q=2则数列an前10项的和为S10=2046,故选C4.在中,若,则的度数为( )A. B. C. D. 【答案】A【解析】【分析】根据余弦定理可求得,进而得到的度数.【详解】由余弦定理得:,.故选:A.【点睛】本题考查余弦定理解三角形的知识,属于基础题.5.在中,的对边分别为,若,则( )A. B. C. D. 【答案】C【解析】【分析】根据已知等式可求得,根据同角三角函数关系可求得结果.【详解】由得:,.故选:【点睛】本
3、题考查余弦定理解三角形、同角三角函数值的求解的问题,属于基础题.6.已知,则的最小值为( )A. 4B. C. 8D. 16【答案】C【解析】【分析】根据,配凑出符合基本不等式的形式,利用基本不等式可求得最小值.【详解】(当且仅当,即时取等号),的最小值为.故选:C.【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活利用“”,配凑出符合基本不等式形式的式子,属于常考题型.7.在等比数列中,且前项和,则此数列的项数等于( )A. B. C. D. 【答案】B【解析】【分析】由等比数列的性质得出,结合,得出和的值,并设等比数列的公比为,由,求出的值,然后利用等比数列的通项公式可求出
4、的值.【详解】设等比数列的公比为,由等比数列的性质可得:,又,和是方程的两根,解方程得或.若等比数列递增,则,解得,解得;若等比数列递减,则,解得,解得.则此数列的项数等于故选:B.【点睛】本题考查等比数列项数的计算,涉及等比数列性质和等比数列前项和的计算,解题的关键就是求出等比数列的公比,考查运算求解能力,属于中等题.8.设变量,满足约束条件,则目标函数的最大值是( )A. 10B. 9C. 8D. 7【答案】B【解析】【分析】由约束条件可得可行域,将问题转化为在轴截距最大值的求解,通过直线平移可确定截距取最大值的点,将点坐标代入目标函数可求得结果.详解】由约束条件可得可行域如下图阴影部分所
5、示:将目标函数化为,则最大时,在轴截距最大,平移可知当直线过时,截距最大,由得:,.故选:B.【点睛】本题考查线性规划中的最值问题的求解,关键是能够将问题转化为直线在轴截距最值的求解问题,属于常考题型.9.设等比数列的公比为,前项和为,且,若,则的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】根据和可得到关于的不等式,结合可解得结果.【详解】由得:,又,解得:.又为等比数列公比,的取值范围为.故选:B.【点睛】本题考查等比数列基本量的求解问题,易错点是忽略等比数列公比不能为零的问题,造成区间求解错误.10.“珠算之父”程大为是我国明代伟大数学家,他的应用数学巨著算法统综的问
6、世,标志着我国的算法由筹算到珠算转变的完成,程大位在算法统综中常以诗歌的形式呈现数学问题,其中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节三升九,上稍四节储三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明”(【注】三升九:升,次第盛;盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节的容积为( )A. 升B. 升C. 升D. 升【答案】B【解析】【分析】设相差同一数量为升,下端第一节盛米升,根据题意得出关于、的方程组,解出这两个量的值,即可计算出中间两节盛米的容积升.【详解】要按依次盛米容积相差同一数量的方式盛米,设相差的同一数量为升,下端第一
7、节盛米升,由题意得,解得,所以,中间两节盛米的容积为(升),故选:B.【点睛】本题考查等差数列的应用,解题的关键就是将问题转化为等差数列的问题,并建立首项和公差的方程组求解,考查方程思想的应用,属于中等题.11. 下列函数中,最小值为2的函数是A. B. C. D. 【答案】D【解析】令,所以,则,所以函数当时取到最小值,不符合;的定义域为,当或时,此时单调递减;当或时,此时单调递增所以在定义域上没有最小值,不符合;,因为,所以当时,函数取到最大值2,不符合;,令,所以,则,所以函数当时取到最小值2,符合,故选D12.( )A. B. C. D. 【答案】B【解析】【分析】采用裂项相消法可直接
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-514020.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
初级(师)考试初级护师-6-2.pdf
