2021高考数学一轮复习课时作业53曲线与方程理202005070249.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 一轮 复习 课时 作业 53 曲线 方程 202005070249
- 资源描述:
-
1、课时作业53曲线与方程 基础达标一、选择题1已知点P是直线2xy30上的一个动点,定点M(1,2),Q是线段PM延长线上的一点,且|PM|MQ|,则Q点的轨迹方程是()A2xy10 B2xy50C2xy10 D2xy50解析:由题意知,M为PQ中点,设Q(x,y),则P为(2x,4y),代入2xy30得2xy50.答案:D2方程|x|1所表示的曲线是()A一个圆 B两个圆C半个圆 D两个半圆解析:由题意得即或故原方程表示两个半圆答案:D3设点A为圆(x1)2y21上的动点,PA是圆的切线,且|PA|1,则P点的轨迹方程为()Ay22x B(x1)2y24Cy22x D(x1)2y22解析:如图
2、,设P(x,y),圆心为M(1,0)连接MA,则MAPA,且|MA|1.又|PA|1,|PM|,即|PM|22,(x1)2y22.答案:D42020珠海模拟已知点A(1,0),直线l:y2x4,点R是直线l上的一点,若,则点P的轨迹方程为()Ay2x By2xCy2x8 Dy2x4解析:设P(x,y),R(x1,y1),由知,点A是线段RP的中点,即点R(x1,y1)在直线y2x4上,y12x14,y2(2x)4,即y2x.答案:B52020福建八校联考已知圆M:(x)2y236,定点N(,0),点P为圆M上的动点,点Q在NP上,点G在线段MP上,且满足2,0,则点G的轨迹方程是()A.1 B
3、.1C.1 D.1解析:由2,0知GQ所在直线是线段NP的垂直平分线,连接GN,|GN|GP|,|GM|GN|MP|62,点G的轨迹是以M,N为焦点的椭圆,其中2a6,2c2,b24,点G的轨迹方程为1,故选A.答案:A二、填空题6在ABC中,A为动点,B,C为定点,B,C(a0),且满足条件sin Csin Bsin A,则动点A的轨迹方程是_解析:由正弦定理得,即|AB|AC|BC|,故动点A是以B,C为焦点,为实轴长的双曲线右支即动点A的轨迹方程为1(x0且y0)答案:1(x0且y0)72020河南开封模拟如图,已知圆E:(x)2y216,点F(,0),P是圆E上任意一点线段PF的垂直平
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
