《同步辅导》2015高中数学北师大版必修二导学案:《直线方程的综合应用》.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线方程的综合应用
- 资源描述:
-
1、第7课时直线方程的综合应用1.巩固直线方程的概念和两直线的位置关系.2.会用直线方程的性质及距离公式解决综合性问题.前面几节课,我们学习了直线的五种方程,两直线间的平行问题、垂直问题,相交的交点坐标,距离公式 ,还接触了对称问题,那么对这些内容有没有完全吸收理解呢?会不会解决它们的综合性问题呢?于是,我们在这里停一下脚步,回头巩固一下我们所学的重点知识,强化一下这些知识的综合性的应用.问题1:两条直线的位置关系(1)设直线l1:y=k1x+b1,l2:y=k2x+b2,则l1l2k1=k2且b1b2; l1l2k1 k2=-1.(2)若直线l1:A1x+B1y+C1=0,l2:A2x+B2y+
2、C2=0,则l1l2A1B2=A2B1且B1C2B2C1; l1l2A1A2+B1B2=0.问题2:距离公式(1)P1(x1,y1),P2(x2,y2)两点间的距离为|P1P2|=.(2)点P(x0,y0)到直线l:Ax+By+C=0的距离d=.(3)直线l1:Ax+By+C1=0,l2:Ax+By+C2=0(C1C2),则d=.问题3:对称问题(1)常见的点关于直线的对称点坐标之间关系总结如下:A(a,b)关于x轴的对称点为A(a,-b);B(a,b)关于y轴的对称点为B(-a,b);C(a,b)关于直线y=x的对称点为C(b,a);D(a,b)关于直线y=-x的对称点为D(-b,-a);P
3、(a,b)关于直线x=m的对称点为P(2m-a,b);Q(a,b)关于直线y=n的对称点为Q(a,2n-b).(2)常见的直线关于直线的对称直线有:设直线l:Ax+By+C=0.l关于x轴对称的直线是Ax+B(-y)+C=0;l关于y轴对称的直线是A(-x)+By+C=0;l关于直线y=x对称的直线是Bx+Ay+C=0;l关于直线y=-x对称的直线是A(-y)+B(-x)+C=0.转化思想是解决对称问题的主要思想方法,其他问题如角的平分线、光线反射等也可转化成对称问题.问题4:直线系方程(1)过定点的直线系:(A1x+B1y+C1)+(A2x+B2y+C2)=0,过由方程组的解确定的定点.(2
4、)平行直线系:直线y=kx+b是与直线y=kx平行的直线系,其中b0;直线Ax+By+C=0是与直线Ax+By=0平行的直线系,其中C0.(3)垂直直线系:直线Bx-Ay+C=0是与直线Ax+By=0垂直的直线系.1.若方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则实数m满足().A.m0B.m-C.m1D.m1,m-,m02.过点(1,3)且与原点的距离为1的直线的条数为().A.3B.2C.1D.03.点A(-2,2)到直线l:(m+1)x+(2-m)y-3m+3=0距离的最大值是.4.在ABC中,高线AD与BE的方程分别是x+5y-3=0和x+y-1=0,AB边所
5、在直线的方程是x+3y-1=0,试求点C的坐标.直线间的平行与垂直问题求过直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点,且分别满足下列条件的直线方程.(1)与直线l:3x+4y-2=0平行.(2)到点P(0,4)的距离为2. 距离公式的应用点P(-2,-1)到直线l:(1+3)x+(1+)y-2-5=0的距离为d,求d的最大值.直线间的对称问题已知直线l:y=3x+3.求:(1)点P(4,5)关于l的对称点坐标;(2)直线y=x-2关于l的对称直线的方程;(3)直线l关于点A(3,2)的对称直线的方程.已知直线(a-1)x-2y+4=0与x-ay-1=0.(1)若两直线平行,
6、则a=;(2)若两直线垂直,则a=.已知正方形的中心为直线x-y+1=0和2x+y+2=0的交点,正方形一边所在的直线方程为x+3y-2=0,求其他三边所在直线的方程.已知直线l:2x-3y+1=0,点A(-1,-2),求:(1)点A关于直线l的对称点A的坐标;(2)直线m:3x-2y-6=0关于直线l的对称直线m的方程.1.过点(2,1)和(a,2)的直线方程为().A.y-1=(x-2)B.x=2C.y-1=(x-2)或x=2D.y-1=(x-2)或y=22.直线x+2y-1=0关于直线x=2对称的直线方程是().A.x+2y-3=0B.x-2y-3=0C.2x-y+3=0D.2x-y-3
7、=03.直线l1:3x+4y-2=0关于直线6x+8y+4=0对称的直线方程为.4.一直线经过点P(3,2),并且和两条直线x-3y+10=0、2x-y-8=0都相交,且两个交点连线的中点为P,求这条直线的方程.(2011年安徽卷)在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是(写出所有正确命题的编号).存在这样的直线,既不与坐标轴平行又不经过任何整点.如果k与b都是无理数,则直线y=kx+b不经过任何整点.直线l经过无穷多个整点,当且仅当l经过两个不同的整点.直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数.存在恰经过一个整点的直线.考题
8、变式(我来改编):第7课时直线方程的综合应用知识体系梳理问题1:(1)k1=k2且b1b2k1 k2=-1(2)A1B2=A2B1且B1C2B2C1A1A2+B1B2=0问题2:(1)(2)(3)问题3:(1)(a,-b)(-a,b)(b,a)(-b,-a)(2m-a,b)(a,2n-b)(2)Ax+B(-y)+C=0A(-x)+By+C=0Bx+Ay+C=0A(-y)+B(-x)+C=0问题4:(1)(2)b0Ax+By+C=0(3)Bx-Ay+C=0基础学习交流1.C2m2+m-3,m2-m不能同时为0,所以m1.2.B根据直线过点(1,3),当斜率存在时,可设其方程为y-3=k(x-1)
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
