数学人教B必修2学案:例题与探究 2-3-1圆的标准方程2-3-2圆的一般方程 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学人教B必修2学案:例题与探究 2-3-1圆的标准方程2-3-2圆的一般方程 WORD版含解析 学人 必修 例题 探究 标准 方程 一般方程 WORD 解析
- 资源描述:
-
1、典题精讲例1求过三点A(1,12)、B(7,10)、C(-9,2)的圆的方程,并求出圆的圆心与半径,作出图形.思路分析:因为圆过三个定点,故可以设圆的一般式方程来求圆的方程.解:设所求的圆的方程为x2+y2+Dx+Ey+F=0,依题意有图2-3-(1,2)-1解得D=-2,E=-4,F=-95.于是所求圆的方程为x2+y2-2x-4y-95=0.将上述方程配方得(x-1)2+(y-2)2=100.于是,圆的圆心D的坐标为(1,2),半径为10,图形如图2-3-(1,2)-1所示.绿色通道:求过三个定点的圆的方程往往采用待定系数法求解.利用圆经过不在同一直线上的三点的条件,由待定系数法求出圆的一
2、般式方程,并由此讨论圆的几何性质.对于由一般式给出的圆的方程,研究其几何性质(圆心与半径等)时,常可用配方法或公式法加以求解.变式训练1已知圆C与圆(x-1)2+y2=1关于直线y=-x对称,则圆C的方程为( )A.(x+1)2+y2=1 B.x2+y2=1 C.x2+(y+1)2=1 D.x2+(y-1)2=1思路解析:求出圆心(1,0)关于直线y=-x的对称点为(0,-1),得到圆C的圆心.故选C.答案:C例2求下列圆的方程:(1)圆心在直线y=-2x上,且与直线y=1-x相切于点(2,-1);(2)圆心为C(0,3),且截直线y=x+1所得弦长为4.思路分析:利用圆的标准方程,把条件转化
3、为关于圆心和半径的方程组来求解.解:(1)设圆心(a,-2a),圆的方程为(x-a)2+(y-2a)2=r2.由解得所求圆的方程为(x-1)2+(y+2)2=2.(2)设圆的方程为(x-3)2+y2=r2,利用点到直线的距离公式可以求得d=|=,再根据垂径定理可知r=.所求圆的方程为(x-3)2+y2=12.绿色通道:在解决与圆相关的问题时,如果涉及到圆心和半径,或者截得的弦长等问题,一般选用圆的标准方程来解题.变式训练2已知圆的半径为,圆心在直线y=2x上,圆被直线x-y=0截得的弦长为,求圆的方程.解:设圆的方程为(x-a)2+(y-b)2=r2,由圆心在直线y=2x上,得b=2a.由圆被
4、直线x-y=0截得的弦长为,将y=x代入(x-a)2+(y-b)2=10,整理得2x2-2(a+b)x+a2+b2-10=0.由弦长公式得.化简得a-b=2.解得a=2,b=4或a=-2,b=-4,所求圆的方程为(x-2)2+(y-4)2=10或(x+2)2+(y+4)2=10.例3如图2-3-(1,2)-2所示,已知圆的内接四边形ABCD中两对角线AC、BD互相垂直,垂足为E,又F是BC的中点,试用坐标法证明EFAD.图2-3-(1,2)-2思路分析:题中两对角线互相垂直,不妨就选它们为坐标轴,此时四个顶点的坐标表示较为简捷.证明:建立如图2.3(1.2)2所示的直角坐标系xOy,并设A、B
5、、C、D的坐标分别为(0,-a),(b,0),(0,c),(-d,0)(a、b、c、d0).于是BC中点F的坐标为(,),故kEF=.又kAD=,故kEFkAD=.由圆的相交弦定理得AEEC=DEEB,即ac=bd.kEFkAD=-1.EFAD.黑色陷阱:用坐标法处理平面几何问题的关键是建立好坐标系,此题若不以两对角线为坐标轴,处理起来相当麻烦.在建立坐标系时,要使尽量多的点落在坐标轴上,或利用图中现有的垂直关系.变式训练3在AOB中,|OB|=3,|OA|=4,|AB|=5,点P是AOB内切圆上的点,求|PA|2+|PB|2+|PC|2的最大值与最小值.图2-3-(1,2)-3解:如图2-3
6、-(1,2)-3建立直角坐标系,使A、B、O三点坐标分别为(4,0)、(0,3)、(0,0).设内切圆半径为r,则有2r+|AB|=|OA|+|OB|,r=1.故内切圆方程为(x-1)2+(y-1)2=1.化为x2+y2-2x-2y+1=0,设点P(x,y),又|PA|2+|PB|2+|PC|2=3x2+3y2-8x-6y+25,由知x2+y2-2y=2x-1,代入得|PA|2+|PB|2+|PC|2=3(2x-1)-8x+25=-2x+22.x0,2,|PA|2+|PB|2+|PC|2最大值为22,最小值为18.例4判断下列方程是否表示圆,如果是,求出圆心和半径;如果不是,请说明理由.(1)
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-529623.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
