数学内部的矛盾.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 内部 矛盾
- 资源描述:
-
1、数学内部的矛盾整个数学的发展史就是一部矛盾斗争的历史。数学内部的矛盾是推动数学长河滚滚向前的主要力量之一。数学以现实世界的空间形式和数量关系作为自己研究的对家,为了在纯粹形态上研究这些形式和关系,就必须和现实世界的内容割裂开来。但是,离开内容的形式和关系是不存在的。因此,数学按它的本质企图实现这种割裂,是企图实现一种不可能的事情。这是在数学本质中的根本矛盾,它是认识的普遍矛盾在数学方面的特殊表现。在越来越接近现实的各个认识阶段上,不断解决和重复上述矛盾,数学就不断地前进、发展,由简单到复杂,由低级向高级。人类最早认识的是自然数,引进零和负数就经过了斗争:要么引进这些数,要么大量的数的减法就行不
2、通。同样,引进分数使乘法有了逆运算除法,否则许多实际问题也不能解决。但是接着又出现了这样的问题:是否所有的量都能够用有理数来表示?发现无理数并最终使得第一次数学危机的解决,促使了逻辑的发展和几何学的系统化。方程解的问题导致虚数的出现,虚数从一开始就被认为是“不实的”,可是这种不实的数却解决了实数所不能解决的问题,从而为自己争得了存在的权利。数学就是这样在矛盾斗争中发展的。几何学从欧几里得几何的一统天下发展到多种几何,也是如此。在19世纪发现了许多用传统方法不能解决的问题,如五次及五次以上代数方程不能通过加、减、乘、除、开方求出根来;古希腊几何三大问题不能通过圆规和直尺作图来解决等等。这些否定的
3、结果表明了传统方法的局限性,也反映了人类认识的深入。这些发现给有关学科带来了极大的冲击,几乎完全改变了它们的方向。例如,代数学从此以后向抽象代数的方面发展,而求解方程的根也变成了分析及计算数学的课题。在第三次数学危机中,这种情况也多次出现,尤其是包含整数算术在内的形式系统的不完全性、许多问题的不可判定性,都大大提高了人们的认识,也促进了数理逻辑的大发展。由无穷小量的矛盾引起的第二次数学危机,反映了数学内部的有限与无穷的矛盾。第三次数学危机涉及集合论和数理逻辑,但它一开始就牵涉到无穷集合,而现代数学脱离无穷集合就寸步难行。一种极端的观点是只考虑有限集合或至多是可数的集合,不过这样一来绝大部分数学
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
幼儿园大班数学测试20以内加减法口算练习题(20200913183001).pdf
