数学思想学好数学的核心.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 思想 学好 核心
- 资源描述:
-
1、数学思想学好数学的核心数学思想方法相比数学基础知识,有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述:比如,集合、对称轴、斜率、焦点 离心率、切点、 ,随着时间的推移,我们会逐渐忘记。而数学思想方法则是一种数学意识,属于思维的范畴,用以对数学问题的认识、处理和解决。掌握数学思想方法,可以令你终身受用。即使数学知识忘记了,数学思想方法也还是对你起作用。掌握数学就意味着要善于解题。当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来。当碰到的题目类型有些难度或者没有做过类似题型时,往往就“卡壳”甚至束手无策了。只有对数学思想、数学方法理解透彻及融会贯通时,才
2、能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。数学思想方法的三个层次以下是高中生需要掌握好的四大数学思想方法。1、函数与方程思想函数的思想,就是运用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的等量关系,建立或构造函数关系,再运用函数的图像和性质去分析问题,转化问题,从而使问题获得解决。方程的思想,就是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型方程或方程组,通过解方程或方程组,或者运
3、用方程的性质去分析、转化问题,使获得解决。函数与方程思想重要形式(1)函数和方程是密切相关的,对于函数yf(x),当y0时,就转化为方程f(x)0,也可以把函数式yf(x)看做二元方程yf(x)0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)0,就是求函数yf(x)的零点;(2)函数与不等式也可以相互转化,对于函数yf(x),当y0时,就转为不等式f(x)0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题有时十分有效;(4)
4、解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(5)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。例题12、数形结合思想数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来
5、阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图像来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质数形结合思想实现途径(1)通过坐标系“形题数解”:借助于直角坐标系、复平面,可以将几何问题代数化这一方法在解析几何中体现的相当充分(在高考中主要也是以解析几何作为知识载体来考查的)值得强调的是,“形题数解”时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理)实现数形结合,常与以下内容有关:实数与数轴上的点的对应关系;函数与图像的对应关系;曲线与方
6、程的对应关系;以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;所给的等式或代数式的结构含有明显的几何意义如等式(x2)2(y1)24,表示坐标平面内以(2,1)为圆心,以2为半径的圆(2)通过转化构造“数题形解”:许多代数结构都有着相应的几何意义,据此,可以将数与形进行巧妙地转化例如,将a(a0)与距离互化;将a2与面积互化,将a2b2aba2b22|a|b|cos(60或120)与余弦定理沟通;将abc0且bca中的a、b、c与三角形的三边沟通;将有序实数对(或复数)和点沟通;将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等这种代数结构向几何结构的转化常常表现为构
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2019-2020学年外研版高中英语必修三同步课件:MODULE 5 GREAT PEOPLE AND GREAT INVENTIONS OF ANCIENT CHINA5-1-1 .ppt
