数学论文之函数对称性的探求.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学论文 函数 对称性 探求
- 资源描述:
-
1、函 数 对 称 性 的 探 究绍兴县越崎中学数学组 徐民江函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。一、 函数自身的对称性探究定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2ax) = 2b证明:(必要性)设点P(x ,y)是y = f (x)图像上
2、任一点,点P( x ,y)关于点A (a ,b)的对称点P(2ax,2by)也在y = f (x)图像上, 2by = f (2ax)即y + f (2ax)=2b故f (x) + f (2ax) = 2b,必要性得证。(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) f (x) + f (2ax) =2bf (x0) + f (2ax0) =2b,即2by0 = f (2ax0) 。 故点P(2ax0,2by0)也在y = f (x) 图像上,而点P与点P关于点A (a ,b)对称,充分性得征。推论:函数 y = f (x)的图像关于原点O对称的充要条
3、件是f (x) + f (x) = 0定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x) = f (ax) 即f (x) = f (2ax) (证明留给读者)推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (x)定理3. 若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(ab),则y = f (x)是周期函数,且2| ab|是其一个周期。 若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称 (ab),则y = f (x)是周期函数,且2| ab|是其一个周
4、期。若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(ab),则y = f (x)是周期函数,且4| ab|是其一个周期。的证明留给读者,以下给出的证明:函数y = f (x)图像既关于点A (a ,c) 成中心对称,f (x) + f (2ax) =2c,用2bx代x得:f (2bx) + f 2a(2bx) =2c(*)又函数y = f (x)图像直线x =b成轴对称, f (2bx) = f (x)代入(*)得:f (x) = 2cf 2(ab) + x(*),用2(ab)x代x得f 2 (ab)+ x = 2cf 4(ab) + x代入(*)得
5、:f (x) = f 4(ab) + x,故y = f (x)是周期函数,且4| ab|是其一个周期。二、 不同函数对称性的探究定理4. 函数y = f (x)与y = 2bf (2ax)的图像关于点A (a ,b)成中心对称。定理5. 函数y = f (x)与y = f (2ax)的图像关于直线x = a成轴对称。函数y = f (x)与ax = f (ay)的图像关于直线x +y = a成轴对称。函数y = f (x)与xa = f (y + a)的图像关于直线xy = a成轴对称。定理4与定理5中的证明留给读者,现证定理5中的 设点P(x0 ,y0)是y = f (x)图像上任一点,则y
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
