数学高一暑假作业练习题.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 暑假 作业 练习题
- 资源描述:
-
1、2019数学高一暑假作业练习题2019数学高一暑假作业练习题下面查字典数学网为大家整理了数学高一暑假作业练习题,希望大家在空余时间进行复习练习和学习,供参考。大家暑期快乐哦。一、填空题A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A、B可以不相邻),那么不同的排法共有_种.答案602. 如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色方法有_ 种.解析若1,3不同色,则1,2,3,43A=72(种);若1,3同色,有CC=24(种),根据分类计数原理可知,共有72+24=96种涂色法.答案963.201
2、9年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有_种.解析 若四人中包含小张和小赵两人,则不同的选派方案有AA=12(种);若四人中恰含有小张和小赵中一人,则不同的选派方案有:CAA=24(种),由分类计数原理知不同的选派方案共有36种.答案 364.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有_种.解析 若3个不同的项目投资到4个城市中的3个,每个城市一项,共A种方法;若3个不同的
3、项目投资到4个城市中的2个,一个城市一项、一个城市两项共CA种方法,由分类计数原理共A+CA=60(种)方法.答案 605.有5名男生和3名女生,从中选出5人分别担任语文、数学、英语、物理、化学学科的课代表,若某女生必须担任语文课代表,则不同的选法共有_种(用数字作答).解析 由题意知,从剩余7人中选出4人担任4个学科课代表,共有A=840(种).答案 840某省高中学校自实施素质教育以来,学生社团得到迅猛发展.某校高一新生中的五名同学打算参加春晖文学社舞者轮滑俱乐部篮球之家围棋苑四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加围棋苑,则不同的
4、参加方法的种数为_.解析设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加围棋苑,有下列两种情况:(1)从乙、丙、丁、戊中选一人(如乙)参加围棋苑,有种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与其他两人分配到其他三个社团中,有A种方法,这时共有CA种参加方法;(2)从乙、丙、丁、戊中选2人(如乙、丙)参加围棋苑,有种方法,甲与丁、戊分配到其他三个社团中有种方法,这时共有A种参加方法.综合(1)(2),共有CA+A=180(种)参加方法.答案1807.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是_(用数字作
5、答).解析 当每个台阶上各站1人时有CA种站法,当两个人站在同一个台阶上时有CCC种站法,因此不同的站法种数有AC+CCC=210+126=336(种).答案 336.某车队有7辆车,现要调出4辆按一定顺序出去执行任务.要求甲、乙两车必须参加,且甲车要先于乙车开出有_种不同的调度方法(填数字).解析 先从除甲、乙外的5辆车任选2辆有C种选法,连同甲、乙共4辆车,排列在一起,选从4个位置中选两个位置安排甲、乙,甲在乙前共有C种,最后安排其他两辆车共有A种方法,不同的调度方法为CCA=120(种).答案 120刘、李两家各带一个小孩一起到公园游玩,购票后排队依次入园.为安全起见,首尾一定有两位爸爸
6、,另外,两个小孩一定要排在一起,则这6人入园的顺序排法共有_.解析先将两位爸爸排在首尾,再将两位小孩视为一个整体同两位妈妈一起排列,最后将两位小孩内部进行排列,故这6人入园的顺序排法种数共有AA=24.答案2410.以一个正五棱柱的顶点为顶点的四面体共有_个.解析 正五棱柱共有10个顶点,若每四个顶点构成一个四面体,共可构成C=210(个)四面体.其中四点在同一平面内的有三类:(1)每一底面的五点中选四点的组合方法有2C个.(2)五条侧棱中的任意两条棱上的四点有C个.(3)一个底面的一边与另一个底面相应的一条对角线平行(例如ABE1C1),这样共面的四点共有2C个.所以C-2C-C-2C=18
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
