数学:3.1.1《方程的根与函数的零点》教案(新人教A版必修1)山西1.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 方程的根与函数的零点
- 资源描述:
-
1、高考资源网() 您身边的高考专家方程的根与函数的零点教学设计方案 课题名称方程的根与函数的零点科 目数学年级 高一教学时间一课时(45分钟)学习者分析1.一般特征学生大部分来自农村,但都是一些基础较好的学生(重点班学生),知识基础差异不大,探究能力差异较大,在教学过程中可以适当拓宽知识面,以便部分学生有更好的发展空间。2.入门能力(1)通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力。这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。(2)学生虽然对二次函数的图像和性质有所了解,但利用函数的观点看问题能力较缺乏,所以教学过程中应该
2、给予学生适当的点拨,从而突出教学重点和难点。3.学习风格学生对课本上的知识比较缺乏兴趣,所以本节课应该用多媒体辅助教学,采用师生互动的方法进行教学。教学目标一、情感态度与价值观 1、.通过对本节课的学习与认识,特别是对三个数学思想的认识与体悟,培养学生学习数学的兴趣,培养学生探究问题的能力 2、通过本节课的学习,培养学生认真、严谨、合作的学习品质。二、过程与方法 1.通过观察探讨,学生认识与领会二次函数图像与二次方程根的关系,最终认识函数零点的概念。从而渗透由特殊到一般的研究思想(认知规律)。 2.在认识函数零点概念的基础上,通过观察总结,学生总结概括函数图像与X轴的交点、方程有无实数根这三者
3、之间关系,从而渗透函数与方程思想。 3在认识和掌握函数图像与X轴的交点、方程有无实数根这三者之间关系基础上,通过实例引导,学生可以尽最大可能的概括出零点判定的方法。从而培养学生数形结合的数学思想。三、知识与技能1.以二次函数图像与一元二次方程的关系为突破口,了解函数零点的概念。发现并掌握方程的根、函数图像与x轴的交点与函数零点之间的关系。2.掌握连续函数在某区间上存在零点的判定方法教学重点、难点1. 发现和认识函数零点与方程根之间的关系2. 探究和掌握连续函数在某区间上存在零点的判定方法。教学资源几何画板、 ppt课件、 课本 方程的根与函数的零点教学活动过程描述教学活动1初步建立零点的概念一
4、、课题引入1、问题一(让学生看多媒体屏幕) 某地区某天早晨五点的温度是2,十二点的温度是12 在这段时间内,假设温度是均匀变化的1)是否存在某时刻的温度为0?2)你能从数学角度解释这一现象吗?问题解决方法:小组讨论 设计意图:通过对实际问题的探讨,为一般函数与方程的关系认识做铺垫。2、问题二(让学生看多媒体屏幕)求方程的实数根,画出函数的图像;并观察他们之间的联系? 问题解决:让学生上黑板板演教师:用几何画板说明这二者之间的关系,并引出函数零点的概念设计意图:通过认识前面一次函数与直线、二次函数与其图像的关系,学生利用一般到特殊到特殊的认知规律对零点的概念有个初步的认识,从而借机引入本课。教学
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
