分享
分享赚钱 收藏 举报 版权申诉 / 15

类型2022届内蒙古高考备考二轮模拟数学(理)试题.doc

  • 上传人:a****
  • 文档编号:543526
  • 上传时间:2025-12-10
  • 格式:DOC
  • 页数:15
  • 大小:1.42MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 内蒙古 高考 备考 二轮 模拟 数学 试题
    资源描述:

    1、2022年高中数学高考备考二轮模拟试题(理科)一、单选题1命题p:,则为()A,B,C,D,2已知,则()ABCD或13抛物线的焦点为F,点A在抛物线上.若,则直线AF的斜率为()ABCD4复数z满足(i为虚数单位),则实数m()A2B1C1D25若存在两个正实数使得等式成立,则实数的取值范围是()ABCD6棱长为2的正方体中,E,F分别是棱BC,的中点,下列命题中错误的是()ABEF平面CEF平面D四面体的体积等于7已知等比数列,公比为q,其中,q均为正整数,且,成等差数列,则等于()A96B48C16D88已知A,F分别是双曲线的右顶点和左焦点,O是坐标原点.点P在第一象限且在C的渐近线上

    2、,满足PAAF.若OP平分APF,则双曲线C的离心率为()A2BC3D9已知函数,的最小正周期为,将其图象沿x轴向右平移个单位,所得图象关于直线对称,则实数m的最小值为()ABCD10我国唐代著名的数学家僧一行在著作大衍历中给出了近似计算的“不等间距二次插值算法”,用数学语言可表述为:若,则在闭区间上函数可近似表示为:,其中,.已知函数,分别取,则用该算法得到()ABCD11圆锥被过顶点的一个截面截取部分后所剩几何体的三视图如图所示,则截取部分几何体的体积为()ABCD12设集合,则()ABCD二、填空题13已知,O为坐标原点,若在抛物线上存在点N,使得,则的取值范围是_.14设函数,若,则a

    3、_.15若tan3sin2,为锐角,则cos2_.16已知双曲线)的左右焦点分别是是双曲线右支上的两点,.记的周长分别为,若,则双曲线的右顶点到直线的距离为_.三、解答题17新能源汽车是指除汽油柴油发动机之外的所有其他能源汽车,被认为能减少空气污染和缓解能源短缺的压力.在当今提倡全球环保的前提下,新能源汽车越来越受到消费者的青睐,新能源汽车产业也必将成为未来汽车产业发展的导向与目标.某车企调查了近期购车的200位车主的性别与购车种类的情况,得到如下数据:购置新能源汽车购置传统燃油汽车总计男性8020100女性6535100总计14555200(1)根据表中数据,判断能否有95%的把握认为是否购

    4、置新能源汽车与性别有关;(2)已知该车企有5种款式不同的汽车,每种款式的汽车均有新能源和传统燃油两种类型各1辆.假设某单位从这10辆汽车中随机购买4辆汽车,设其中款式相同的汽车的对数为,求的分布列与数学期望.附:,.0.100.050.0250.0102.7063.8415.0246.63518在四棱锥PABCD中,二面角PADB的大小为,且,.(1)证明:.(2)求PD与平面PAB所成角的正弦值.19已知数列满足.(1)求的通项公式;(2)在和之间插入n个数,使这个数构成等差数列,记这个数的公差为,求.20在直角坐标系xOy中,曲线C的参数方程为,(t为参数)(1)求C的直角坐标方程;(2)

    5、点是曲线C上在第一象限内的一动点,求的最小值21已知函数(1)求不等式的解集;(2)若关于x的不等式恒成立,求a的取值范围22已知椭圆的焦距为2c,左右焦点分别是,其离心率为,圆与圆相交,两圆的交点在椭圆E上.(1)求椭圆E的方程.(2)已知A,B,C为椭圆E上三个不同的点,O为坐标原点,且O为ABC的重心.证明:ABC的面积为定值.23已知函数.(1)当时,求曲线在点处的切线方程.(2)证明:.1D【详解】由题意,命题“,”可化为命题“,”根据全称命题与存在性命题的关系得:命题“,”的否定“,”.故选:D.2A【详解】由已知,平方得,由于,所以,解得:或(舍去),所以,故.故选:A.3B【详

    6、解】由题意得:,设点,则,故,故点A坐标为或,所以直线的斜率为.故选:B.4C【详解】设,则,有,由复数相等得到.故选:C.5D【详解】由得,令,则, 设,则,时,递增,递减,时时,所以的取值范围是,即的取值范围是故选:D6C【详解】,A正确;如图,取的中点,连接,易知,所以四边形是平行四边形,所以/,又平面,平面,所以/平面,B正确;若平面,因为平面,则,因为平面,平面,所以,又平面,平面,所以平面,又平面,得,显然不成立,C不正确;因为E为BC中点,所以,D正确.故选:C.【点睛】7B【详解】等比数列,由,有,即,由于,均为正整数,故(不合题意,舍去)或,得.所以.故选:B.8A【详解】根

    7、据题意, A,F分别是双曲线的右顶点和左焦点,可得点的坐标为,点的坐标为,其中,所以直线的方程为,即.所以坐标原点到直线的距离等于. 因为,所以点到直线的距离等于.由平分,由角平分线上一点到角两边距离相等可得,即.因为离心率,又,所以,解得:.故选:A.9B【详解】由其最小正周期为,有,所以,将其图象沿轴向右平移()个单位,所得图象对应函数为,其图象关于对称,则有,所以, ,由,实数的最小值为.故选:B.10D【详解】根据条件可知,所以,所以.故选:D.11A【详解】解:如图,圆锥底面半径为2,高为3,截取的几何体的体积.故选:A.12C【详解】因为,所以.故选:C.13【详解】过M作C的一条

    8、切线,切点为Q,如图所示:设,因为在抛物线上存在点N,使得,所以,当时,直线MQ的方程为,将代入,可得,由,解得,所以的取值范围为.故答案为:14【详解】由题可知x0时,f(x)0;x0时,f(x)3.若f(x)4,则,解得x0或2,若f(a)0(不可能,舍去)或f(a)2,则.故答案为:ln2.15【详解】tan3sin2,是锐角,sin0,故答案为:16【详解】解:根据双曲线的定义,.所以,故双曲线右顶点,因为,所以在上,在上,即直线方程为:,所以双曲线的右顶点到直线的距离为故答案为:17(1)有95%的把握认为是否购置新能源汽车与性别有关(2)分布列答案见解析,数学期望:(1)根据题意可

    9、得,所以有95%的把握认为是否购置新能源汽车与性别有关.(2)的可能取值有0,1,2,则,所以的分布列为012P因此,.18(1)证明见解析(2)(1)如图,取AD的中点O,连接PO,BO,则,PO,平面POB,所以平面POB,平面POB,所以.(2)以O为原点,直线OB,OD分别为x,y轴,建立空间直角坐标系,由(1)知,则,.设平面PAB的法向量,则令,则,.故取.设PD与平面PAB所成的角,则.故PD与平面PAB所成角的正弦值为.19(1)(2)(1)由题意,.由,得, ,得,所以.又因为当时,上式也成立,所以的通项公式为.(2)由题可知,令, ,得.故.20(1)(2)(1)由题可知,

    10、所以因为,所以C的直角坐标方程为(2)点是曲线C上在第一象限内的一动点,令,则,因为上式在上单调递减,故当时,取得最小值21(1)(2)(1)不等式等价于或或解得或故原不等式的解集为(2)当时,不等式恒成立,即当时,可化为,因为,当且仅当时等号成立所以,即a的取值范围为22(1)(2)证明见解析(1)解:由椭圆得的离心率为,即,又由圆与圆,可得圆心分别为,半径分别为,因为圆与圆相交,两圆的交点在椭圆E上,可得,解得,则,可得,所以椭圆E的方程为.(2)证明:设,当AB垂直于x轴时,因为O为ABC的重心,所以或.根据椭圆的对称性,不妨令,此时,可得.当AB与x轴不垂直时,设直线的直线方程为,联立方程组,整理得,则,设,则,.代入,得,又由,原点到的距离,所以,所以,即的面积为定值.23(1)(2)证明见解析(1)解:当时,函数,可得,所以,因为,所以切点坐标为,所以曲线在点处的切线方程为,即曲线在点处的切线方程.(2)证明:令,则,当时,;当时,;所以在上单调递减,在上单调递增,所以,即,则.令,则,当时,;当时,则在上单调递减,在上单调递增,所以,可得,即.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022届内蒙古高考备考二轮模拟数学(理)试题.doc
    链接地址:https://www.ketangku.com/wenku/file-543526.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1