分享
分享赚钱 收藏 举报 版权申诉 / 21

类型2020-2021学年高考数学 考点 第一章 集合与常用逻辑用语 命题及其关系、充分条件与必要条件(理).docx

  • 上传人:a****
  • 文档编号:583575
  • 上传时间:2025-12-11
  • 格式:DOCX
  • 页数:21
  • 大小:1.80MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020-2021学年高考数学 考点 第一章 集合与常用逻辑用语 命题及其关系、充分条件与必要条件理 2020 2021 学
    资源描述:

    1、命题及其关系、充分条件与必要条件1命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题2四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系两个命题互为逆否命题,它们具有相同的真假性两个命题为互逆命题或互否命题,它们的真假性没有关系3充分条件、必要条件与充要条件的概念若pq,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件pq且qpp是q的必要不充分条件pq且qpp是q的充要条件pqp是q的既不充分也不必要条件pq且qp概念方法微思考若条件p,q以集合的形式出现,即Ax|p(x),Bx|q(x),则由AB

    2、可得,p是q的充分条件,请写出集合A,B的其他关系对应的条件p,q的关系提示若AB,则p是q的充分不必要条件;若AB,则p是q的必要条件;若AB,则p是q的必要不充分条件;若AB,则p是q的充要条件;若AB且BA,则p是q的既不充分也不必要条件1(2020天津)设,则“”是“”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】A【解析】由,解得或,故”是“”的充分不必要条件,故选2(2020上海)命题:存在且,对于任意的,使得(a);命题单调递减且恒成立;命题单调递增,存在使得,则下列说法正确的是A只有是的充分条件B只有是的充分条件C,都是的充分条件D,都不是的充分条件

    3、【答案】C【解析】对于命题:当单调递减且恒成立时,当时,此时,又因为单调递减,所以又因为恒成立时,所以(a),所以(a),所以命题命题,对于命题:当单调递增,存在使得,当时,此时,(a),又因为单调递增,所以,所以(a),所以命题命题,所以,都是的充分条件,故选3(2020北京)已知,则“存在使得”是“”的A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件【答案】C【解析】当,为偶数时,此时,当,为奇数时,此时,即充分性成立,当,则,或,即,即必要性成立,则“存在使得”是“”的充要条件,故选4(2020浙江)设集合,中至少有2个元素,且,满足:对于任意的,若,则;对于任意

    4、的,若,则下列命题正确的是A若有4个元素,则有7个元素B若有4个元素,则有6个元素C若有3个元素,则有5个元素D若有3个元素,则有4个元素【答案】A【解析】取:,2,则,4,2,4,4个元素,排除,4,则,16,4,8,16,5个元素,排除;,4,8,则,16,32,64,4,8,16,32,64,7个元素,排除;故选5(2020浙江)已知空间中不过同一点的三条直线,则“,共面”是“,两两相交”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件【答案】B【解析】空间中不过同一点的三条直线,若,在同一平面,则,相交或,有两个平行,另一直线与之相交,或三条直线两两平行而若“,两

    5、两相交”,则“,在同一平面”成立故,在同一平面”是“,两两相交”的必要不充分条件,故选6(2020上海)“”是“”的A充分非必要条件B必要非充分条件C充要条件D既非充分又非必要条件【答案】A【解析】(1)若,则, “ “是“ “的充分条件;(2)若,则,得不出, “”不是“”的必要条件, “”是“”的充分非必要条件故选7(2019天津)设,则“”是“”的A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件【答案】B【解析】,推不出,是的必要不充分条件,即是的必要不充分条件故选8(2019天津)设,则“”是“”的A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件

    6、【答案】B【解析】,推不出,是的必要不充分条件,即是的必要不充分条件故选9(2019新课标)记不等式组表示的平面区域为命题,;命题,下面给出了四个命题这四个命题中,所有真命题的编号是ABCD【答案】A【解析】作出等式组的平面区域为在图形可行域范围内可知:命题,;是真命题,则假命题;命题,是假命题,则真命题;所以:由或且非逻辑连词连接的命题判断真假有:真;假;真;假;故答案真,正确故选10(2019新课标)设,为两个平面,则的充要条件是A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面【答案】B【解析】对于,内有无数条直线与平行,或;对于,内有两条相交直线与平行

    7、,;对于,平行于同一条直线,或;对于,垂直于同一平面,或故选11(2019北京)设点,不共线,则“与的夹角为锐角”是“”的A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件【答案】C【解析】点,不共线,当与的夹角为锐角时, “与的夹角为锐角” “”,“” “与的夹角为锐角”,设点,不共线,则“与的夹角为锐角”是“”的充分必要条件故选12(2019浙江)若,则“”是“”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件【答案】A【解析】,即,若,则,但,即推不出,是的充分不必要条件故选13(2019北京)设函数为常数),则“”是“为偶函数”的A充分而不必

    8、要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件【答案】C【解析】设函数为常数),则“” “为偶函数”,“为偶函数” “”,函数为常数),则“”是“为偶函数”的充分必要条件故选14(2019上海)已知、,则“”是“”的A充分非必要条件B必要非充分条件C充要条件D既非充分又非必要条件【答案】C【解析】等价,得“”, “”是“”的充要条件,故选15(2018天津)设,则“”是“”的A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件【答案】A【解析】由,得,则,反之,由,得或,则或即“”是“”的充分不必要条件故选16(2018天津)设,则“”是“”的A充分而不必要条件B

    9、必要而不充分条件C充要条件D既不充分也不必要条件【答案】A【解析】由可得,解得,由,解得,故“”是“”的充分不必要条件,故选17(2018上海)已知,则“”是“”的A充分非必要条件B必要非充分条件C充要条件D既非充分又非必要条件【答案】A【解析】,则“” “”,“” “或”, “”是“”的充分非必要条件故选18(2018浙江)已知平面,直线,满足,则“”是“”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件【答案】A【解析】,当时,成立,即充分性成立,当时,不一定成立,即必要性不成立,则“”是“”的充分不必要条件故选19(2018北京)设,是非零实数,则“”是“,成等比数

    10、列”的A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件【答案】B【解析】若,成等比数列,则,反之数列,1,1满足,但数列,1,1不是等比数列,即“”是“,成等比数列”的必要不充分条件故选20(2018北京)设,均为单位向量,则“”是“”的A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件【答案】C【解析】 “”平方得,即,即,则,即,反之也成立,则“”是“”的充要条件,故选21(2018上海)设为数列的前项和,“是递增数列”是“是递增数列”的A充分非必要条件B必要非充分条件C充要条件D既非充分又非必要条件【答案】D【解析】数列,是递增数列,但不是递

    11、增数列,即充分性不成立,数列1,1,1,满足是递增数列,但数列1,1,1,不是递增数列,即必要性不成立,则“是递增数列”是“是递增数列”的既不充分也不必要条件,故选22(2020新课标)关于函数有如下四个命题:的图象关于轴对称的图象关于原点对称的图象关于直线对称的最小值为2其中所有真命题的序号是_【答案】【解析】对于,由可得函数的定义域为,故定义域关于原点对称,由;所以该函数为奇函数,关于原点对称,所以错对;对于,由,所以该函数关于对称,对;对于,令,则,由双勾函数的性质,可知,所以无最小值,错;故答案为:23(2020新课标)设有下列四个命题:两两相交且不过同一点的三条直线必在同一平面内:过

    12、空间中任意三点有且仅有一个平面:若空间两条直线不相交,则这两条直线平行:若直线平面,直线平面,则则下述命题中所有真命题的序号是_【答案】【解析】设有下列四个命题:两两相交且不过同一点的三条直线必在同一平面内根据平面的确定定理可得此命题为真命题,:过空间中任意三点有且仅有一个平面若三点在一条直线上则有无数平面,此命题为假命题,:若空间两条直线不相交,则这两条直线平行,也有可能异面的情况,此命题为假命题,:若直线平面,直线平面,则由线面垂直的定义可知,此命题为真命题;由复合命题的真假可判断为真命题,为假命题,为真命题,为真命题,故真命题的序号是:,故答案为:24(2018北京)能说明“若对任意的,

    13、都成立,则在,上是增函数”为假命题的一个函数是_【答案】【解析】例如,尽管对任意的,都成立,当,上为增函数,在,为减函数,故答案为:25(2018北京)能说明“若,则”为假命题的一组,的值依次为_【答案】,【解析】当,时,满足,但为假命题,故答案可以是,故答案为:,强化训练1(2020重庆模拟)已知抛物线的焦点为,抛物线上一点的的纵坐标,则是的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】A【解析】抛物线的焦点为,设,抛物线上一点的的纵坐标,点的横坐标,由,得,是的充分条件,若,则,解得或,不是的必要条件,是的充分不必要条件故选A2(2020天津二模)设,则“”是“”

    14、的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】B【解析】,由,不一定有或取负值时,对数式无意义),反之,由,一定有故“”是“”的必要不充分条件故选B3(2019中卫一模)命题“若,则且”的逆否命题是A若,则且”B若,则或”C若且,则D若或,则【答案】D【解析】命题“若,则且”的逆否命题是“若或,则”,故选D4(2020双流区校级模拟)命题“若的三个内角构成等差数列,则必有一内角为”的否命题A与原命题真假相异B与原命题真假相同C与原命题的逆否命题的真假不同D与原命题的逆命题真假相异【答案】B【解析】原命题“若的三个内角构成等差数列,则必有一内角为”;若,成等差数列,则

    15、,又;解得;故其为真命题;否命题:“若的三个内角不能构成等差数列,则任意内角均不为”根据互为逆否命题的两命题同真假,否命题与逆命题互为逆否命题,即可以研究其逆命题的真假;逆命题为:若有一内角为,则的三个内角构成等差数列”;若有一内角为,不妨设,则;所以;即的三个内角构成等差数列;所以其逆命题为真;则否命题为真;故选B5(2020重庆模拟)已知命题:“若对任意的都有,则”,则命题的否命题为A若存在使得,则B若存在使得,则C若,则存在使得D若,则存在使得【答案】B【解析】否命题是条件、结论都否定,“若对任意的都有,则”的否命题为“若存在使得,则故选B6(2019秋信阳期末)某种食品的广告词是:“幸

    16、福的人们都拥有”,初听起来,这似乎只是普通的赞美说词,然而它的实际效果可大了,原来这句话的等价命题是A不拥有的人们不一定幸福B不拥有的人们可能幸福C拥有的人们不一定幸福D不拥有的人们就不幸福【答案】D【解析】“幸福的人们都拥有”我们可将其化为:如果人是幸福的,则这个人拥有某种食品它的逆否命题为:如果这个没有拥有某种食品,则这个人是不幸福的即“不拥有的人们就不幸福”故选D7(2019绵阳模拟)已知命题,使得;命题,则下列命题为真命题的是ABCD【答案】D【解析】命题,使得,命题为假命题,命题,是真命题,为假命题,为假命题,为假命题,真命题,故选D8(2020新华区校级模拟)使不等式成立的一个必要

    17、不充分条件是ABCD【答案】A【解析】根据题意,不等式即,不等式的解集为,;依次分析选项:对于,不等式的解集为,是不等式成立的必要不充分条件,符合题意;对于,不等式的解集为,不是使不等式成立的必要不充分条件,不符合题意;对于,解可得,即不等式的解集为,是不等式成立的充分不必要条件,不符合题意;对于,变形可得,解可得或,即不等式的解集为,是不等式成立的充分不必要条件,不符合题意;故选A9(2020沈阳三模)已知条件,条件,则是的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】A【解析】,条件条件,条件成立时,条件不一定成立,例如,时,条件成立,条件不成立,是的充分不必要条

    18、件故选A10(2020河南模拟)“”是“”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】B【解析】根据题意,不等式或,解可得或,即不等式的解集为或,解可得,即不等式的解集为,又由或,则“”是“”的必要不充分条件;故选B11(2020梅河口市校级模拟)已知,则是的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】A【解析】解不等式可得,或,解不等式可得,故,解集对应的集合分别为:,是的的充分不必要条件故选A12(2020济宁模拟)设,是非零向量,“”是“”的A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件【答案】C【解析】

    19、可知,是非零向量,若,则;,是非零向量,若,则;则“”是“”的充分必要条件,故选C13(2020湖北模拟)已知,是两个不同的平面,是两条不同的直线,若且,则“”是“”的A充分必要条件B充分而不必要条件C必要而不充分条件D既不充分也不必要条【答案】C【解析】且,可得或内,但由且,可推出,故”是“”的必要而不充分条件,故选C14(2020西湖区校级模拟)已知圆,直线过点且倾斜角为,则“”是“直线与圆相切”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】A【解析】直线过点且倾斜角为,当时,此时直线方程为,直线与圆相切,整理可得,当时,此时直线为方程为,此时满足与圆相切; “

    20、”是“直线与圆相切”的充分不必要条件,故选A15(2020衡水模拟)已知直线和圆,则“”是“直线与圆相切”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】A【解析】的方程为,表示以为圆心、半径的圆圆心到直线的方程为的距离为,解得;当时,直线与圆相切;反之,当直线与圆相切时, “”是“直线与圆相切”的充分不必要条件故选A16(2020鼓楼区校级模拟)已知,是两条不同的直线,是一个平面,且,“”是“”的A必要不充分条件B充分不必要条件C充要条件D既不充分也不必要条件【答案】A【解析】当,且,则或,当,且,则,故,“”是“”的必要不充分条件,故选A17(2020兴庆区校级模

    21、拟)已知,是两条不同直线,是两个不同的平面,且,则“与为异面直线”是“”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】A【解析】,若与为异面直线,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有,满足充分性;反之,若,则与平行或异面,故不满足必要性则“与为异面直线”是“”的充分不必要条件故选A18(2020新乡三模)已知,则“”是“”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】D【解析】若,根据得,;根据,得出;若,根据得,;根据,得出, “”是“”的既不充分也不必要条件故选D19(2020涪城区校级模拟)已知、是两个不同的平面,、是两条不重合的直线,命题:若,则;命题:若,则,则下列命题为真命题的是ABCD【答案】C【解析】根据题意,命题:若,则或,命题为假命题,对于命题,若,则与平面不一定垂直,命题为假命题,则、都是假命题,为真命题;故选C20(2020来宾模拟)已知命题:对任意,总有;命题:“”是“”的充分不必要条件,则下列命题为真命题的是ABCD【答案】A【解析】根据指数函数的性质可知,对任意,总有成立,即为真命题,:“”是“”的充分不必要条件,即为真命题,则为真命题,为假命题,为假命题,为假命题故选A

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020-2021学年高考数学 考点 第一章 集合与常用逻辑用语 命题及其关系、充分条件与必要条件(理).docx
    链接地址:https://www.ketangku.com/wenku/file-583575.html
    相关资源 更多
  • 全国通用版2022版高考数学大二轮复习考前强化练2客观题综合练B理.docx全国通用版2022版高考数学大二轮复习考前强化练2客观题综合练B理.docx
  • 全国通用版2022版高考地理二轮复习综合升级练区域可持续发展.docx全国通用版2022版高考地理二轮复习综合升级练区域可持续发展.docx
  • 全国通用版2022版高考地理二轮复习专题四水体运动和流域综合开发第9讲水循环和洋流练习.docx全国通用版2022版高考地理二轮复习专题四水体运动和流域综合开发第9讲水循环和洋流练习.docx
  • 全国通用版2022版高考地理二轮复习专题五自然地理环境的整体性和差异性第12讲自然地理环境的差异性练习.docx全国通用版2022版高考地理二轮复习专题五自然地理环境的整体性和差异性第12讲自然地理环境的差异性练习.docx
  • 全国通用版2022版高考地理二轮复习专题三大气运动和天气气候第7讲常见天气系统练习.docx全国通用版2022版高考地理二轮复习专题三大气运动和天气气候第7讲常见天气系统练习.docx
  • 全国通用版2022版高考地理二轮复习专题一地理图表和地球运动第3讲地球运动的地理意义专题突破练3练习.docx全国通用版2022版高考地理二轮复习专题一地理图表和地球运动第3讲地球运动的地理意义专题突破练3练习.docx
  • 全国通用版2022版高考地理二轮复习专题一地理图表和地球运动第2讲统计图表的判读专题突破练2练习.docx全国通用版2022版高考地理二轮复习专题一地理图表和地球运动第2讲统计图表的判读专题突破练2练习.docx
  • 全国通用版2022版高考化学大二轮复习非选择题专项训练六有机合成与推断.docx全国通用版2022版高考化学大二轮复习非选择题专项训练六有机合成与推断.docx
  • 全国通用版2022版高考化学大二轮复习非选择题专项训练三化学反应原理.docx全国通用版2022版高考化学大二轮复习非选择题专项训练三化学反应原理.docx
  • 全国通用版2022版高考化学大二轮复习选择题专项训练四常见元素及其化合物.docx全国通用版2022版高考化学大二轮复习选择题专项训练四常见元素及其化合物.docx
  • 全国通用版2022版高考化学大二轮复习选择题专项训练十化学实验基础.docx全国通用版2022版高考化学大二轮复习选择题专项训练十化学实验基础.docx
  • 全国通用版2022版高考化学大二轮复习选择题专项训练五元素周期表及周期律.docx全国通用版2022版高考化学大二轮复习选择题专项训练五元素周期表及周期律.docx
  • 全国通用版2022年中考数学复习第四单元图形的初步认识与三角形第18讲相似三角形练习.docx全国通用版2022年中考数学复习第四单元图形的初步认识与三角形第18讲相似三角形练习.docx
  • 全国通用版2022年中考数学复习第四单元图形的初步认识与三角形第14讲三角形的基础知识练习.docx全国通用版2022年中考数学复习第四单元图形的初步认识与三角形第14讲三角形的基础知识练习.docx
  • 全国通用版2022年中考数学复习第四单元图形的初步认识与三角形方法技巧训练四解直角三角形中常见的基本模型练习.docx全国通用版2022年中考数学复习第四单元图形的初步认识与三角形方法技巧训练四解直角三角形中常见的基本模型练习.docx
  • 全国通用版2022年中考数学复习第四单元图形的初步认识与三角形方法技巧训练一与角平分线有关的基本模型练习.docx全国通用版2022年中考数学复习第四单元图形的初步认识与三角形方法技巧训练一与角平分线有关的基本模型练习.docx
  • 全国通用版2022年中考数学复习第六单元圆第24讲与圆相关的计算练习.docx全国通用版2022年中考数学复习第六单元圆第24讲与圆相关的计算练习.docx
  • 全国通用版2022年中考数学复习第六单元圆滚动小专题七与圆有关的计算与证明练习.docx全国通用版2022年中考数学复习第六单元圆滚动小专题七与圆有关的计算与证明练习.docx
  • 全国通用版2022年中考数学复习第八单元统计与概率第27讲统计练习.docx全国通用版2022年中考数学复习第八单元统计与概率第27讲统计练习.docx
  • 全国通用版2022年中考数学复习第五单元四边形方法技巧训练五与中点有关的基本模型练习.docx全国通用版2022年中考数学复习第五单元四边形方法技巧训练五与中点有关的基本模型练习.docx
  • 全国通用版2022年中考数学复习第二单元方程与不等式第8讲一元一次不等式组练习.docx全国通用版2022年中考数学复习第二单元方程与不等式第8讲一元一次不等式组练习.docx
  • 全国通用版2022年中考数学复习第二单元方程与不等式第7讲分式方程练习.docx全国通用版2022年中考数学复习第二单元方程与不等式第7讲分式方程练习.docx
  • 全国通用版2022年中考数学复习第二单元方程与不等式第6讲一元二次方程练习.docx全国通用版2022年中考数学复习第二单元方程与不等式第6讲一元二次方程练习.docx
  • 全国通用版2022年中考数学复习第三单元函数第9讲函数的基础知识练习.docx全国通用版2022年中考数学复习第三单元函数第9讲函数的基础知识练习.docx
  • 全国通用版2022年中考数学复习第三单元函数第11讲反比例函数练习.docx全国通用版2022年中考数学复习第三单元函数第11讲反比例函数练习.docx
  • 全国通用版2022年中考数学复习第七单元图形变化滚动小专题八与图形变换有关的简单计算与证明练习.docx全国通用版2022年中考数学复习第七单元图形变化滚动小专题八与图形变换有关的简单计算与证明练习.docx
  • 全国通用版2022年中考数学复习第一单元数与式第1讲实数及其运算练习.docx全国通用版2022年中考数学复习第一单元数与式第1讲实数及其运算练习.docx
  • 全国通用版2022年中考数学复习基础题型滚动组合卷四.docx全国通用版2022年中考数学复习基础题型滚动组合卷四.docx
  • 全国通用版2022年中考数学复习基础题型滚动组合卷二.docx全国通用版2022年中考数学复习基础题型滚动组合卷二.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1