2020版高考数学新增分大一轮江苏专用讲义 习题:第七章 不等式、推理与证明、数学归纳法 7-6 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学新增分大一轮江苏专用讲义 习题:第七章 不等式、推理与证明、数学归纳法 7-6 WORD版含解析
- 资源描述:
-
1、7.6直接证明与间接证明考情考向分析高考要求了解分析法、综合法、反证法,会用这些方法处理一些简单问题,高考一般不单独考查,会与其他知识综合在一起命题1直接证明(1)定义:直接从原命题的条件逐步推得命题成立的证明方法(2)一般形式ABC本题结论(3)综合法定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止这种证明方法常称为综合法推证过程(4)分析法定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止这种证明方法常称为分析法推证过程2间接证明(1)常用的间接证明方法有反证法、同一法等(2)反证法的基本步骤反
2、设假设命题的结论不成立,即假定原结论的反面为真归谬从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果存真由矛盾结果,断定反设不真,从而肯定原结论成立概念方法微思考1直接证明中的综合法是演绎推理吗?提示是用综合法证明时常省略大前提2综合法与分析法的推理过程有何区别?提示综合法是执因索果,分析法是执果索因,推理方式是互逆的3反证法是“要证原命题成立,只需证其逆否命题成立”的推理方法吗?提示不是反证法是命题中“p与綈p”关系的应用题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)综合法是直接证明,分析法是间接证明()(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充
3、要条件()(3)用反证法证明结论“ab”时,应假设“ab”()(4)反证法是指将结论和条件同时否定,推出矛盾()(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程()(6)证明不等式Q解析P22a132,Q22a132,P2Q2,又P0,Q0,PQ.3P87习题T7设实数a,b,c成等比数列,非零实数x,y分别为a与b,b与c的等差中项,则_.答案2解析由题意,得x,y,b2ac,xy,2.题组三易错自纠4若a,b,c为实数,且ab0,则下列命题正确的是_(填序号)ac2abb2;.答案解析a2aba(ab),ab0,ab0,a2ab.(*1)又abb2b(ab
4、)0,abb2,(*2)由(*1)(*2)得a2abb2.5用反证法证明命题:“设a,b为实数,则方程x3axb0至少有一个实根”时,要作的假设是_答案方程x3axb0没有实根解析方程x3axb0至少有一个实根的反面是方程x3axb0没有实根6如果A1B1C1的三个内角的余弦值分别等于A2B2C2的三个内角的正弦值,则A2B2C2是_三角形答案钝角解析由条件知,A1B1C1的三个内角的余弦值均大于0,则A1B1C1是锐角三角形,假设A2B2C2是锐角三角形由得那么,A2B2C2,这与三角形内角和为相矛盾所以假设不成立假设A2B2C2是直角三角形,不妨设A2,则cos A1sin A21,A10
5、,矛盾所以A2B2C2是钝角三角形题型一综合法的应用1已知m1,a,b,则a,b的大小关系为_答案a0(m1),即aab成立,则a,b应满足的条件是_答案a0,b0且ab解析ab(ab)(ab)(ba)()(ab)()2()当a0,b0且ab时,()2()0.abab成立的条件是a0,b0且ab.3若a,b,c是不全相等的正数,求证:lglglglg alg blg c.证明a,b,c(0,), 0, 0, 0.由于a,b,c是不全相等的正数,上述三个不等式中等号不能同时成立,abc0成立上式两边同时取常用对数,得lglg(abc),lglglglg alg blg c.4已知a,b,c0,a
6、bc1.求证:(1);(2).证明(1)()2(abc)222(abc)(ab)(bc)(ca)3,(当且仅当abc时取等号)(2)a0,3a11,(3a1)24,33a,同理得33b,33c,以上三式相加得493(abc)6,(当且仅当abc时取等号)思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性(2)综合法的逻辑依据是三段论式的演绎推理题型二分析法的应用例1 已知函数f(x)tan x,x,若x1,x2,且x1x2,求证:f(x1)f(x2
7、)f.证明要证f(x1)f(x2)f,即证明(tan x1tan x2)tan ,只需证明tan ,只需证明.由于x1,x2,故x1x2(0,)所以cos x1cos x20,sin(x1x2)0,1cos(x1x2)0,故只需证明1cos(x1x2)2cos x1cos x2,即证1cos x1cos x2sin x1sin x22cos x1cos x2,即证cos(x1x2)f.引申探究若本例中f(x)变为f(x)3x2x,试证:对于任意的x1,x2R,均有f.证明要证明f,即证明2,因此只要证明(x1x2)(x1x2),即证明3,因此只要证明,由于当x1,x2R时,3x10,3x20,
8、由基本不等式知显然成立,当且仅当x1x2时,等号成立故原结论成立思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件正确把握转化方向是使问题顺利解决的关键(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证跟踪训练1 已知a0,证明: a2.证明要证 a2,只需证 (2)因为a0,所以(2)0,所以只需证22,即2(2)84,只需证a2.因为a0,a2显然成立(当a1时等号成立),所以要证的不等式成立题型三反证法的应用命题点1证明否定性命题例2 设an是公比为q的
9、等比数列(1)推导an的前n项和公式;(2)设q1,证明:数列an1不是等比数列(1)解设an的前n项和为Sn,则当q1时,Sna1a1a1na1;当q1时,Sna1a1qa1q2a1qn1,qSna1qa1q2a1qn,得(1q)Sna1a1qn,Sn,Sn(2)证明假设an1是等比数列,则对任意的kN*,(ak11)2(ak1)(ak21),a2ak11akak2akak21,aq2k2a1qka1qk1a1qk1a1qk1a1qk1,a10,2qkqk1qk1.q0,q22q10,q1,这与已知矛盾假设不成立,故an1不是等比数列命题点2证明存在性命题例3 已知在四棱锥SABCD中,底面
10、是边长为1的正方形,又SBSD,SA1.(1)求证:SA平面ABCD;(2)在棱SC上是否存在异于S,C的点F,使得BF平面SAD?若存在,确定F点的位置;若不存在,请说明理由(1)证明由已知得SA2AD2SD2,SAAD.同理SAAB.又ABADA,AB平面ABCD,AD平面ABCD,SA平面ABCD.(2)解假设在棱SC上存在异于S,C的点F,使得BF平面SAD.BCAD,BC平面SAD,AD平面SAD.BC平面SAD.而BCBFB,BC,BF平面SBC,平面SBC平面SAD.这与平面SBC和平面SAD有公共点S矛盾,假设不成立不存在这样的点F,使得BF平面SAD.命题点3证明唯一性命题例
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-593086.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
