2020高考数学理二轮课标通用题型练4 大题专项(二) 数列的通项、求和问题 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020高考数学理二轮课标通用题型练4大题专项二数列的通项、求和问题 WORD版含解析 2020 高考 学理 二轮 通用 题型 专项 数列 求和 问题 WORD 解析
- 资源描述:
-
1、题型练4大题专项(二)数列的通项、求和问题题型练第64页一、解答题1.已知数列an满足a2-a1=1,其前n项和为Sn,当n2时,Sn-1-1,Sn,Sn+1成等差数列.(1)求证an为等差数列;(2)若Sn=0,Sn+1=4,求n.答案:(1)证明当n2时,由Sn-1-1,Sn,Sn+1成等差数列,可知2Sn=Sn-1-1+Sn+1,即Sn-Sn-1=-1+Sn+1-Sn,即an=-1+an+1(n2),则an+1-an=1(n2),又a2-a1=1,故an是公差为1的等差数列.(2)解由(1)知等差数列an的公差为1.由Sn=0,Sn+1=4,得an+1=4,即a1+n=4.由Sn=0,得
2、na1+n(n-1)2=0,即a1+n-12=0,解得n=7.2.已知等差数列an满足a4=7,2a3+a5=19.(1)求an;(2)设bn-an是首项为2,公比为2的等比数列,求数列bn的通项公式及其前n项和Tn.解:(1)由题意得a1+3d=7,2(a1+2d)+a1+4d=19,解得a1=1,d=2.an=1+2(n-1)=2n-1.(2)由题意可知bn-an=2n,bn=2n+2n-1,Tn=(2+22+2n)+1+3+(2n-1),Tn=2n+1+n2-2.3.已知等比数列an的公比q1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列bn满足b1=1,数列(bn+1
3、-bn)an的前n项和为2n2+n.(1)求q的值;(2)求数列bn的通项公式.解:(1)由a4+2是a3,a5的等差中项,得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.由a3+a5=20,得8q+1q=20,解得q=2或q=12,因为q1,所以q=2.(2)设cn=(bn+1-bn)an,数列cn的前n项和为Sn,由cn=S1,n=1,Sn-Sn-1,n2,解得cn=4n-1.由(1)可知an=2n-1,所以bn+1-bn=(4n-1)12n-1.故bn-bn-1=(4n-5)12n-2,n2,bn-b1=(bn-bn-1)+(bn-1-bn-2)+(b3-
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-594341.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
陕西省蓝田县焦岱中学高中数学北师大版必修二:1-5平行关系的性质第一课时 课件 .ppt
