2021-2022学年新教材高中数学 第二章 直线和圆的方程 2.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022学年新教材高中数学 第二章 直线和圆的方程 2021 2022 学年 新教材 高中数学 第二 直线 方程
- 资源描述:
-
1、2.5.2圆与圆的位置关系课后篇巩固提升必备知识基础练1.两圆x2+y2-2x-2y=0和x2+y2-6x+2y+6=0交于A,B两点,则AB的垂直平分线的方程是()A.x+y+3=0B.x-y+2=0C.x+y-2=0D.2x-y-1=0解析AB的垂直平分线就是两圆的连心线,两圆的圆心分别为(1,1),(3,-1),过两圆圆心的直线方程为x+y-2=0.答案C2.若圆x2+y2-2x+F=0和圆x2+y2+2x+Ey-4=0的公共弦所在的直线方程是x-y+1=0,则()A.E=-4,F=8B.E=4,F=-8C.E=-4,F=-8D.E=4,F=8解析联立x2+y2-2x+F=0,x2+y2
2、+2x+Ey-4=0,-可得4x+Ey-F-4=0,即x+E4y-F+44=0,由两圆的公共弦所在的直线方程为x-y+1=0,得E4=-1,-F+44=1,解得E=-4,F=-8.答案C3.已知两圆相交于A(1,3),B(m,-1)两点,两圆的圆心均在直线x-y+c=0上,则m+2c的值为()A.-1B.1C.3D.0解析由题意知,直线x-y+c=0为线段AB的垂直平分线,且AB的中点1+m2,1在直线x-y+c=0上,1+m2-1+c=0,m+2c=1.答案B4.已知圆C1:(x+a)2+(y-2)2=1与圆C2:(x-b)2+(y-2)2=4相外切,a,b为正实数,则ab的最大值为()A.
3、23B.94C.32D.62解析由题意得,圆C1:(x+a)2+(y-2)2=1的圆心为C1(-a,2),半径r1=1.圆C2:(x-b)2+(y-2)2=4的圆心为C2(b,2),半径r2=2.圆C1:(x+a)2+(y-2)2=1与圆C2:(x-b)2+(y-2)2=4相外切,|C1C2|=r1+r2,即a+b=3,由基本不等式,得aba+b22=94,当且仅当a=b=32时,等号成立.故选B.答案B5.若圆x2+y2-2ax+a2=2和圆x2+y2-2by+b2=1相外离,则a,b满足的条件是.解析两圆的连心线的长为d=a2+b2.两圆相外离,d2+1,a2+b23+22.答案a2+b2
4、3+226.若点A(a,b)在圆x2+y2=4上,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是.解析点A(a,b)在圆x2+y2=4上,a2+b2=4.又圆x2+(y-b)2=1的圆心C1(0,b),半径r1=1,圆(x-a)2+y2=1的圆心C2(a,0),半径r2=1,则|C1C2|=a2+b2=4=2,|C1C2|=r1+r2.两圆外切.答案外切7.(1)求圆心在直线y=-2x上,且与直线y=-x+1相切于点P(2,-1)的圆的方程;(2)求与圆x2+y2-2x-4y=0外切于点(2,4)且半径为25的圆的方程.解(1)过点P(2,-1)且与直线y=-x+1垂直的直线
5、为x-y-3=0,由y=-2xx-y-3=0求得x=1,y=-2.即圆心C(1,-2),半径r=|CP|=2,所求圆的方程为(x-1)2+(y+2)2=2.(2)圆方程化为(x-1)2+(y-2)2=5,得该圆圆心为(1,2),半径为5,故两圆连心线斜率k=4-22-1=2.设所求圆心为(a,b),所以(a-1)2+(b-2)2=35,4-b2-a=2,解得a=4,b=8,或a=-2,b=-4.(舍去)所以所求圆的方程为(x-4)2+(y-8)2=20.关键能力提升练8.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是()A.(x-5)2+(y+7)2=25B
6、.(x-5)2+(y+7)2=17或(x-5)2+(y+7)2=15C.(x-5)2+(y+7)2=9D.(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9解析设动圆圆心(x,y),则若两圆内切,则有(x-5)2+(y+7)2=4-1=3,即(x-5)2+(y+7)2=9;若两圆外切,则有(x-5)2+(y+7)2=4+1=5,即(x-5)2+(y+7)2=25.答案D9.已知点M(-2,0),N(2,0),若圆x2+y2-6x+9-r2=0(r0)上存在点P(不同于M,N),使得PMPN,则实数r的取值范围是()A.(1,5)B.1,5C.(1,3)D.1,3解析由PMPN得,
7、点P在以MN为直径的圆上(不同于M,N),以MN为直径的圆的方程为x2+y2=4.由x2+y2-6x+9-r2=0得(x-3)2+y2=r2(r0),所以两圆的圆心距d=3,依题意得,|r-2|3r+2,解得1r2+4,即(a-2)235,设与圆C1相切的直线l1的方程为y=kx,则|2k-3|k2+1=2,解得k=512,则与圆C2相切的直线l2的斜率k=-1k=-125,直线l2的方程为y=-125x,即12x+5y=0,所以|12a+20|122+52=4,解得a=-6或a=83,结合(a-2)235可知a=-6,故选C.答案C11.已知点P(t,t-1),tR,点E是圆O:x2+y2=
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
