分享
分享赚钱 收藏 举报 版权申诉 / 6

类型2021-2022学年高中数学 第3章 圆锥曲线与方程测评(含解析)北师大版选修2-1 (2).docx

  • 上传人:a****
  • 文档编号:602474
  • 上传时间:2025-12-11
  • 格式:DOCX
  • 页数:6
  • 大小:146.63KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021-2022学年高中数学 第3章 圆锥曲线与方程测评含解析北师大版选修2-1 2 2021 2022 学年 高中数学 圆锥曲线 方程 测评 解析 北师大 选修
    资源描述:

    1、第三章测评(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程x2+(x2+y2-1)2=0所确定的曲线是()A.y轴或圆B.两点(0,1)与(0,-1)C.y轴或直线y=1D.以上都不正确答案B2.如图,已知圆O的方程为x2+y2=100,点A(-6,0),M为圆O上任一点,AM的垂直平分线交OM于点P,则点P的轨迹是()A.圆B.抛物线C.椭圆D.两条直线答案C3.双曲线=1(mn0)的离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则mn的值为()A.B.C.D.答案A4.已知椭圆=1(a

    2、b0)分别过点A(2,0)和B(0,-1),则该椭圆的焦距为()A.B.2C.D.2答案B5.双曲线C:x2-=1的一条渐近线与抛物线M:y2=4x的一个交点为P(异于坐标原点O),抛物线M的焦点为F,则OFP的面积为()A.B.C.D.答案A6.若点P是以F1,F2为焦点的椭圆=1(ab0)上一点,且=0,tanPF1F2=,则此椭圆的离心率e=()A.B.C.D.答案A7.已知双曲线=1(a0,b0)的一条渐近线为y=kx(k0),离心率e=k,则双曲线方程为()A.=1B.=1C.=1D.=1答案C8.抛物线y=x2上到直线2x-y-4=0的距离最近的点的坐标是()A.B.(1,1)C.

    3、D.(2,4)答案B9.已知点M(-3,0),N(3,0),B(1,0),动圆C与直线MN相切于点B,过M,N与圆C相切的两直线相交于点P,则点P的轨迹方程为()A.x2-=1(x1)B.x2-=1(x0)D.x2-=1(x1)答案A10.若点P为共焦点的椭圆C1和双曲线C2的一个交点,F1,F2分别是它们的左、右焦点,设椭圆的离心率为e1,双曲线的离心率为e2,若=0,则=()A.1B.2C.3D.4答案B11.直线y=k(x-1)与椭圆C:=1交于不同的两点M,N,椭圆=1的一个顶点为A(2,0),当AMN的面积为时,则k的值为()A.B.C.1D.答案C12.在平面直角坐标系中,两点P1

    4、(x1,y1),P2(x2,y2)间的“L-距离”定义为|P1P2|=|x1-x2|+|y1-y2|,则平面内与x轴上两个不同的定点F1,F2的“L-距离”之和等于定值(大于|F1F2|)的点的轨迹可以是()答案A二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=-1的距离相等.若机器人接触不到过点P(-1,0)且斜率为k的直线,则k的取值范围是.答案(-,-1)(1,+)14.设中心在原点的椭圆与双曲线2x2-2y2=1有相同的焦点,且它们的离心率互为倒数,则该椭圆的方程是.答案+y2=115.已

    5、知双曲线E:=1(a0,b0)与抛物线C:y2=2px(p0)有共同的一个焦点,过双曲线E的左焦点且与抛物线C相切的直线恰与双曲线E的一条渐近线平行,则E的离心率为.答案16.已知双曲线C1:=1(a0,b0)与双曲线C2:=1有相同的渐近线,且C1的右焦点为F(,0),则a=,b=.答案12三、解答题(本大题共6个小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(满分10分)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,-).(1)求双曲线方程;(2)若点M(3,m)在此双曲线上,求.解(1)双曲线的一条渐近线方程为y=x,a=b,设双

    6、曲线方程为x2-y2=(0).把(4,-)代入双曲线方程得42-(-)2=,=6,所求双曲线方程为x2-y2=6,即=1.(2)由(1)知双曲线方程为x2-y2=6,双曲线的焦点为F1(-2,0),F2(2,0).点M在双曲线上,32-m2=6,m2=3,=(-2-3,-m)(2-3,-m)=(-3)2-(2)2+m2=-3+3=0.18.(满分12分)如图,已知抛物线C1:x2+by=b2经过椭圆C2:=1(ab0)的两个焦点.(1)求椭圆C2的离心率;(2)设点Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若QMN的重心在抛物线C1上,求C1和C2的方程.解(1)因为抛物线C1经

    7、过椭圆C2的两个焦点F1(-c,0),F2(c,0),所以c2+b0=b2,即c2=b2.由a2=b2+c2=2c2,得椭圆C2的离心率e=.(2)由(1)可知a2=2b2,则椭圆C2的方程为=1.联立抛物线C1的方程x2+by=b2得2y2-by-b2=0,解得y=-或y=b(舍去),所以x=b,即M,N.所以QMN的重心坐标为(1,0).因为重心在抛物线C1上,所以12+b0=b2,得b=1.所以a2=2.所以抛物线C1的方程为x2+y=1,椭圆C2的方程为+y2=1.19.(满分12分)在平面直角坐标系xOy中,已知双曲线C:2x2-y2=1.(1)设F是C的左焦点,M是C右支上一点,若

    8、|MF|=2,求点M的坐标;(2)设斜率为k(|k|)的直线l交C于P,Q两点,若l与圆x2+y2=1相切,求证:OPOQ.(1)解双曲线C:-y2=1,左焦点F,设M(x,y),则|MF|2=+y2=,由点M是双曲线右支上一点,知x,所以|MF|=x+=2,得x=,则y=.所以M.(2)证明设直线PQ的方程是y=kx+b.因为直线PQ与已知圆相切,故=1,即b2=k2+1.(*)由得(2-k2)x2-2kbx-b2-1=0.设P(x1,y1),Q(x2,y2),又|k|b0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D

    9、两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.解(1)由已知可设C2的方程为y2=4cx,其中c=.不妨设A,C在第一象限,由题设得A,B的纵坐标分别为,-;C,D的纵坐标分别为2c,-2c,故|AB|=,|CD|=4c.由|CD|=|AB|得4c=,即3=2-2,解得=-2(舍去),.所以C1的离心率为.(2)由(1)知a=2c,b=c,故C1:=1.所以C1的四个顶点坐标分别为(2c,0),(-2c,0),(0,c),(0,-c),C2的准线为x=-c.由已知得3c+c+c+c=12,即c=2.所以C1的标准方程

    10、为=1,C2的标准方程为y2=8x.22.(满分12分)如图,O为坐标原点,双曲线C1:=1(a10,b10)和椭圆C2:=1(a2b20)均过点P,且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C1,C2的方程;(2)是否存在直线l,使得l与C1交于A,B两点,与C2只有一个公共点,且|=|?证明你的结论.解(1)设C2的焦距为2c2,由题意知,2c2=2,2a1=2.从而a1=1,c2=1.因为点P在双曲线x2-=1上,所以=1.故=3.由椭圆的定义知2a2=2.于是a2=2.故C1,C2的方程分别为x2-=1,=1.(2)不存在符合题设条件的直线.若直线l垂

    11、直于x轴,因为l与C2只有一个公共点,所以直线l的方程为x=或x=-.当x=时,易知A(),B(,-),所以|=2,|=2.此时,|.当x=-时,同理可知,|.若直线l不垂直于x轴,设l的方程为y=kx+m.由得(3-k2)x2-2kmx-m2-3=0.当l与C1相交于A,B两点时,设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,从而x1+x2=,x1x2=.于是y1y2=k2x1x2+km(x1+x2)+m2=.由得(2k2+3)x2+4kmx+2m2-6=0.因为直线l与C2只有一个公共点,所以上述方程的判别式=16k2m2-8(2k2+3)(m2-3)=0.化简,得2k2=m2-3,因此=x1x2+y1y2=0,于是+2-2,即|,故|.综合可知,不存在符合题设条件的直线.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021-2022学年高中数学 第3章 圆锥曲线与方程测评(含解析)北师大版选修2-1 (2).docx
    链接地址:https://www.ketangku.com/wenku/file-602474.html
    相关资源 更多
  • 北京清华大学附属中学朝阳学校高考英语一轮复习试卷2.docx北京清华大学附属中学朝阳学校高考英语一轮复习试卷2.docx
  • 北京清华大学附属中学朝阳学校高考英语一轮复习试卷1.docx北京清华大学附属中学朝阳学校高考英语一轮复习试卷1.docx
  • 北京清华大学附属中学朝阳学校高考英语一轮复习练习3.docx北京清华大学附属中学朝阳学校高考英语一轮复习练习3.docx
  • 北京清华大学附属中学朝阳学校高考英语一轮复习练习2.docx北京清华大学附属中学朝阳学校高考英语一轮复习练习2.docx
  • 北京海淀首师大二附2018届高三10月月考生物试题(无答案).docx北京海淀首师大二附2018届高三10月月考生物试题(无答案).docx
  • 北京海淀理工大学附属中学学年度第一学期高二期中物理试卷(理)无答案.docx北京海淀理工大学附属中学学年度第一学期高二期中物理试卷(理)无答案.docx
  • 北京海淀十一学校10月生物月考(无答案).docx北京海淀十一学校10月生物月考(无答案).docx
  • 北京海淀区生物教研:总复习《生物圈中的绿色植物》学案 课件 测试题 素材 (共22份打包).docx北京海淀区生物教研:总复习《生物圈中的绿色植物》学案 课件 测试题 素材 (共22份打包).docx
  • 北京海淀区北京十一学校九年级上3月月考物理试卷 word无答案.docx北京海淀区北京十一学校九年级上3月月考物理试卷 word无答案.docx
  • 北京海淀区初三第一学期期中地理试题(1)(图片版 无答案).docx北京海淀区初三第一学期期中地理试题(1)(图片版 无答案).docx
  • 北京海淀区中考地理模拟题图片版 无答案.docx北京海淀区中考地理模拟题图片版 无答案.docx
  • 北京海淀区2023-2024学年高三上学期期末考试生物学练习题答案.docx北京海淀区2023-2024学年高三上学期期末考试生物学练习题答案.docx
  • 北京海淀区2022届初三二模化学试题及答案.docx北京海淀区2022届初三二模化学试题及答案.docx
  • 北京海淀区19-20上学期初二物理教研:第一章 物态变化 教材教法建议 课件(共122张PPT).docx北京海淀区19-20上学期初二物理教研:第一章 物态变化 教材教法建议 课件(共122张PPT).docx
  • 北京榜样优秀群体先进事迹报告总结.docx北京榜样优秀群体先进事迹报告总结.docx
  • 北京朝阳区北京市陈经纶中学分校初三上学期物理期中试卷(图片版无答案).docx北京朝阳区北京市陈经纶中学分校初三上学期物理期中试卷(图片版无答案).docx
  • 北京朝阳区2022届初三二模历史试题及答案.docx北京朝阳区2022届初三二模历史试题及答案.docx
  • 北京昌平高三二模数学试卷 北师大word含解析.docx北京昌平高三二模数学试卷 北师大word含解析.docx
  • 北京昌平区高三期末质量抽查物理.docx北京昌平区高三期末质量抽查物理.docx
  • 北京昌平中考模拟试题(附答案).docx北京昌平中考模拟试题(附答案).docx
  • 北京新学道临川学校2018-2019学年度高一上学期期末考试历史试卷(无答案).docx北京新学道临川学校2018-2019学年度高一上学期期末考试历史试卷(无答案).docx
  • 北京房山区良乡二中初三上学期物理期中试卷(图片版无答案).docx北京房山区良乡二中初三上学期物理期中试卷(图片版无答案).docx
  • 北京房山区2021届高三下学期第二次模拟测试试卷英语试题 WORD版含答案.docx北京房山区2021届高三下学期第二次模拟测试试卷英语试题 WORD版含答案.docx
  • 北京房山区2021届高三下学期第二次模拟测试物理试题 WORD版含答案.docx北京房山区2021届高三下学期第二次模拟测试物理试题 WORD版含答案.docx
  • 北京房屋买卖合同范本2篇.docx北京房屋买卖合同范本2篇.docx
  • 北京师范大学(珠海)附属高级中学2015-2016学年高一上学期期中考试政治试题 WORD版含答案.docx北京师范大学(珠海)附属高级中学2015-2016学年高一上学期期中考试政治试题 WORD版含答案.docx
  • 北京师范大学附属小学三年级数学竞赛试题(无答案).docx北京师范大学附属小学三年级数学竞赛试题(无答案).docx
  • 北京师范大学附属实验中学2022-2023学年高二化学上学期期中试题(Word版附解析).docx北京师范大学附属实验中学2022-2023学年高二化学上学期期中试题(Word版附解析).docx
  • 北京师范大学附属实验中学2022-2023学年高一化学上学期期中试题(Word版附解析).docx北京师范大学附属实验中学2022-2023学年高一化学上学期期中试题(Word版附解析).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1